Realization of THz Band Mixer Using Graphene
Main Article Content
Abstract
In this article a new method for creating mixer component in infrared and THz is suggested. Since the nonlinear property of admittance creates frequency components that do not exist in the input signal and the electrical conductivity is associated with admittance, in our work we have proven and simulated that the nonlinear property of graphene admittance can produce mixer component. The simulation results show that the mixer component is larger than other components, therefore the mixer works properly. Because of nano scale of graphene structure, this method paves the road to achieve super compact circuits.
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
N. Papasimakis, Z. Luo, Z. Xi. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev," Graphene in a Photonic Metamaterial", Optics Express, 8353-8360, 2010.
S. A. Mikhailov, K. Ziegler, "A New Electromagnetic Mode in Graphene", Phys. Rev. Lett. 66, 016803, 2004.
David R. Andersen, "Graphene-based long-wave infrared TM surface plasmon modulator", JOSAB, Vol. 24, Issue 4, pp. 818-823, 2010.
V. P. Gusynin, S. G. Sharapov and J. P. Carbotte, "Magneto-optical conductivity in graphene", J. Phys.: Condens. Matter 16 026222,pp 1-26, 2004.
V. P. Gusynin and S. G. Sharapov, "Transport of Dirac Quasiparticles in Graphene: Hall and Optical Conductivities", cond-mat,0512154, Phys Rev. B 43, 245411, 2006.
V. P. Gusynin, S. G. Sharapov and J. P. Carbotte, "Unusual Microwave Response of Dirac Quasiparticles in Graphene", cond-mat/0603264, Phys. Rev. Lett. 66, 256802 (2006).
T. Stauber, N. M. R. Peres and A. K. Geim, Optical Conductivity of Graphene in The Visible Region of The Spectrum, physical review, 085432-1-802008.
G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, "Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation," Phys. Rev. B, vol. 60, pp. 14136–14146, 1666.
J.-N. Fucus, M. O. Goerbig, "Introduction to the Physical Properties of Graphene", Lecture Notes, 2008.
A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, D. N. Krasikov, "Graphene: Fabrication Methods and Thermophysical Properties", Physics, pp 224 - 258, 2011.
A. Vakil, N. Engheta," One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene",accepted in physics.optics.
A. Vakil, and N. Engheta," Transformation Optics Using Graphene", Science,Vol. 332 no. 6035, pp. 1291-1294, June 2011.
R. M. Westervelt, "Graphene Nanoelectronics", Science, Vol. 320 no. 5874 pp. 324-325, April 2008.
Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, "100 GHz transistors from wafer scale epitaxial graphene," Science, vol. 327, no. 5966, p. 662, Feb. 2010.
O. Habibpour, S. Cherednichenko, J. Vukusic, K. Yhland and J. Stake "A Subharmonic Graphene FET Mixer", Electron Device Let. IEEE, pp 71-74, Jan. 2012.
G. W. Hanson, "Dyadic Green's Functions for an Anisotropic Non-Local Model of Biased Graphene", IEEE 2008. A. M. Barychev "Superconductor-Insulator- Superconductor THz Mixer Integrated with a Superconducting Flux-Flow Oscillator", PHD thesis, Delft university of technology, Netherland, 2005.
S. A. Mass, "Analysis of Nonlinear Circuits", Artech House, 1988.