Nano-Dielectric Resonator Antenna Reflectarray/Transmittarray for Terahertz Applications

Main Article Content

H. A. Malhat
N. A. Eltresy
S. H. Zainud-Deen
K. H. Awadalla

Abstract

Nanoantennas have introduced wide bandwidth for fast data communications. The material properties of good conducting metals introduce plasmonic behavior at Terahertz frequencies. The material property of good conducting metals using Drude Lorentz model has been investigated. The radiation characteristics of nano-dielectric resonator antenna (NDRA) reflectarray at 633 nm have been investigated. A parametric study for the nano DRA unit cell dimensions and material has been introduced. A NDR with silver ground plane have been designed and analyzed. A nano-transmitarray unit-cell has been introduced for the analysis. A comparison between the radiation characteristics of 17×17 and 21×21 NDRA transmitarray has been given. A compromise between the nano-transmitarray size, maximum gain, and operating bandwidth is applied to Terahertz applications. The finite integral technique is used to carry a full wave analysis to design a NDRA reflectarray and a NDRA transmitarray.

Downloads

Download data is not yet available.

Article Details

How to Cite
Malhat, H. A., Eltresy, N. A., Zainud-Deen, S. H., & H. Awadalla, K. (2015). Nano-Dielectric Resonator Antenna Reflectarray/Transmittarray for Terahertz Applications. Advanced Electromagnetics, 4(1), 36–44. https://doi.org/10.7716/aem.v4i1.304
Section
Research Articles

References

A. C. Balanis, Antenna theory analysis and design, 3rd Edition, John Wiley & Sons‏, USA, 2012.

M. Agio, "Optical antennas as nanoscale resonators," Nanoscale Journal, vol. 3, pp. 692-706, 2011.

P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science Magazine, Vol. 308, pp. 1607-1609 , June 2005.

View Article

T. H. Taminiau, F.B. Segerink, R.J. Moerland, L. Kuipers, and N.F. Hulst, "Near-field driving of a optical monopole antenna," Journal of Optics A: Pure and Applied Optics, vol. 9, pp. 315-321, Aug. 2007.

View Article

I. S. Maksymov, A.E. Miroshnichenko, Y.S. Kivshar, "Actively tunable optical Yagi-Uda nanoantenna with bistable emission characteristics," Optics express, vol. 8, pp. 8929-8938, Feb. 2012.

View Article

H. Fischer and O.J. Martin, "Engineering the optical response of plasmonic nanoantennas," Optics express, vol. 16, no. 12, pp. 9144-9154, June 2008.

View Article

R. Vajtai, Hand book of nanomaterials, Springer Handbooks, New York, USA, 2013.

View Article

N. Kumar, Spontaneous emission rate enhancement using optical antennas, Ph.D. Thesis, University of California, Berkeley, USA, 2013. K. M. Luk, K.W. Leung, and J. R. James, Dielectric resonator antennas, Research Studies Press, Hertfordshire, England, 2002. 

L. Zou, Dielectric resonator antennas from multifunction microwave devices to optical nano-antennas, Ph.D. Thesis, School of Electrical and Electronic Engineering, University of Adelaid, Australia, March 2013.

S. H. Zainud-Deen, H.A. Malhat, S.M. Gaber, M. Ibrahim, and K.H. Awadalla, "Plasma reflectarray," Plasmonics, vol. 8, no. 3, pp. 1469-1475, Sep. 2013.

View Article

J. Huang, and J.A. Encinar, Reflectarray antennas, John Wiley and Sons, Inc., New Jersy, USA, 2007.

View Article

S.H. Zainud-Deen, Hend A. Malhat, S.M. Gaber, and K. H. Awadalla, " Perforated Nanoantenna Reflectarray," Progress In Electromagnetics Research M, PIER M, vol. 29, pp. 253-265, 2013.

H.A. Malhat, S.H. Zainud-Deen, and S.M. Gaber, "Circularly Polarized Graphene Based Transmitarray for Terahertz Applications," Progress In Electromagnetics Research M, PIER M, vol. 36, pp. 185-191, 2014.

View Article

R. Schumann, T. Weiland, W.H. Schilders, E.J. Maten, and S.H. Houben, "Recent advances in finite integration technique for high frequency applications," Scientific Computing in Electrical Engineering ,vol.4, pp. 46-57, 2004.

View Article

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," APPLIED OPTICS, vol.22, No. 7, pp.1099-11201, April 1983.

View Article