Metric entropy in linear inverse scattering

Main Article Content

M. A. Maisto
R. Solimene
R. Pierri

Abstract

The role of multiple views and/or multiple frequencies on the achievable performance in linear inverse scattering problems is addressed. To this end, the impact of views and frequencies on the Kolmogorov entropy measure is studied. This way the metric information that can be conveyed back from data to the unknown can be estimated.


For the sake of simplicity, the study deals with strip scatterers and the cases of discrete angles of incidence and/or frequencies. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Maisto, M. A., Solimene, R., & Pierri, R. (2016). Metric entropy in linear inverse scattering. Advanced Electromagnetics, 5(2), 46–52. https://doi.org/10.7716/aem.v5i2.396
Section
Research Articles

References

A D.- L. Marks, A family of approximations spanning the Born and Rytov scattering series, Opt. Exp. 14: 8837–8847, 2006.

View Article

C. W. Groetch, Inverse Problems in the Mathematical Sciences, Vieweg, Braunschweing, 1993.

F. Riesz and B. Nagy, Functional Analysys, Dover, New York, 1990.

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, IOP, Bristol 1998.

View Article

A D.- L. Marks, N. Magnoli and G. A. Viano, On the eigenfunction espansions associated with Fredholm integral equation of first kind in the presence of noise, J. Math. Analys. Appl. 197: 188–206 (1996).

View Article

J. L. Harris, Diffraction and resolving power, J. Opt. Soc. Am. 54, 931–936 (1963).

View Article

G. Toraldo Di Francia, Degrees of freedom of an image, J. Opt. Soc. Am. 59: 799–804 (1969).

View Article

G. Newsam and R. Barakat, Essential dimension as a well-defined number of degrees of freedom of finiteconvolution operators appearing in optics, J. Opt. Soc. Am. A 2: 2040–2045 (1985).

View Article

E. De Micheli, G. A. Viano, Metric and probabilistic information associated with Fredholm integral equations of the first kind, J. Int. Eq. Appl. 14: 283–310 (2002).

View Article

C. Vogel, Computational Methods for Inverse Problems, SIAM - Frontiers in Applied Mathematics Series, N. 23, (2002).

E. De Micheli and G. A. Viano, Fredholm Integral Equations of the First Kind and Topological Information Theory, Integr. Equ. Oper. Theory 73: 553–571 (2012).

View Article

R. Solimene, M. A. Maisto, R. Pierri, The role of diversity on the singular values of linear scattering operators: the case of strip objects, J. Opt. Soc. A 30: 2266–2272 (2013).

View Article

R. Solimene, M. A. Maisto and R. Pierri, Inverse scattering in the presence of a reflecting plane, Journal of Optics 18: (2), 025603.

View Article

D. Slepian, H. O. Pollak, Prolate spheroidal wave function, Fourier analysis and uncertainty I,Bell Syst. Tech. J. 40: 43–63 (1961).

View Article

H. J. Landau and H. O. Pollak, Prolate spheroidal wave function, Fourier analysis and uncertainty II, Bell Syst. Tech. J. 40: 64–84 (1961).

View Article