Mutual Coupling Reduction of DRA for MIMO Applications
Main Article Content
Abstract
In this paper, A multiple input Multiple Output (MIMO) antenna using two Square Dielectric Resonators (SDRs) is introduced. The mutual coupling between the two SDRAs is reduced using two different methods; the first method is based on splitting a spiral slot in the ground plane, then filling the slot with dielectric material, "E.=2.2". The second method is based on inserting a copper parasitic element, having the same shape of the splitted Spiral, between the two SDRAs. The effect of replacing the copper parasitic element with Carbon nanotubes (CNTs) parasitic element "SOC12 doped long-MWCNT BP" is also studied. The antenna system is designed to operate at 6 GHz. The analysis and simulations are carried out using finite element method (FEM). The defected ground plane method gives a maximum isolation of l8dB at element spacing of 30mm (0.6λo), whereas the parasitic element method gives a maximum isolation of 42.5dB at the same element spacing.
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
A.-H. Majeed, A.-S. Abdullah, R.-A. Abd-Alhameed, K.-H. Sayidmarie, MIMO Antenna Array Using Cylindrical Dielectric Resonator for Wide Band Communications Applications, Int. J. Electromagnetics and Applications 4(2): 40-48, 2014.
A. Sharma and S. C. Shrivastava, Bandwidth Enhancement Techniques of Dielectric Resonator Antenna, Int. J. Engineering Science and Technology 3: 5995-5999, 2011.
M. I. Sulaiman, and S. IC. Khamas, A Singly Fed Rectangular Dielectric Resonator Antenna with A Wideband Circular, IEEE Antennas Wirel. Propag. Lett. 9: 615-618, 2010.
K. I. C. Gebril, S. K. A. Rahim, and A. Y. Abdurrahman, Bandwidth Enhancement and Miniaturization of Dielectric Resonator Antenna for 5.8 GHz WLAN, Prog. Electromagn. Res. C 19: 179-189, 2011.
A. H. Majeed, A. S. Abdullah, F. Elmegri, K. H. Sayidmarie, R. A. Abd-Alhameed and J. M. Noras., Aperture-Coupled Asymmetric Dielectric Resonators Antenna for Wideband Applications, IEEE Antennas Wirel. Propag. Lett. 13: 927-930, 2014.
M. S. M. Aras, M. K. A Rahim, Z. Rasin and M. Z. A. Abdul Aziz., An Array of Dielectric Resonator Antenna for Wireless Application, Proc. IEEE International RF and Microwave Conference, Kuala Lumpur, Malysia, pp. 459-463, 2008.
M. Brar and S. K. Shanna, A Wideband Aperture-Coupled Pentagon Shape Dielectric Resonator Antenna (DRA) for Wireless Communication Applications, IEEE International Symposium on Antennas & Propagation, pp.1674-1677, 2011.
A. Sharma, K. Khare, S. C. Shrivastava., Dielectric Resonator Antenna for X Band Microwave Application, Int. J. Advanced Research in Electrical, Electronics and Instrumentation Engineering 2, (6): 2247-2252, 2013.
R. Chair, A. A. Kishk and K. F. Lee., Comparative Study on the Mutual Coupling Between different sized cylindrical dielectric resonators antennas and Circular Microstrip Patch Antennas, IEEE Trans. Antennas Propag. 53 (3): 1011- 1019, 2005.
G. Zheng, A. A. Kishk, A.W. Glisson and A. B. Yakovlev, A mutual coupling reduction technique for dielectric resonator antennas over AMC surface, IEEE Antennas and Propagation Society Int. Symp., Albuquerque, NM, USA, pp. 377 -380, 2006.
D. Guha, S. Biswas, T. Joseph and M. T. Sebastian, Defected ground structure to reduce mutual coupling between cylindrical dielectric resonator antennas, Electron. Lett. 44(14): 836-837, 2008.
S. H. Zainud-Deen, H. A. Malhat, and K.H. Awadalla, Dielectric Resonator Antenna Mounted on A Circular Cylindrical Ground Plane, Prog. Electromagn. Res. B 19: 427-444, 2010.
R. Kumari, S. K. Behera, Mutual Coupling Reduction in C-shaped Dielectric Resonator Antenna array for MIMO Applications, Poc. INDICON, Annual IEEE, India, 2012.
F. Y. Zulkifli, E.T. R.ahardjo, and D. Hartanto, Mutual Coupling Reduction Using Defected Ground
M. Kumar, V. Nath, Analysis of low mutual coupling compact multi-band microstrip patch antenna and its array using defected ground structure, Int. J. Engineering Science and Technology 19: 866-874, 2016.
M. K. Khandelwal, B. K. Kanaujia, and S. Kumar. Defected Ground Structure: Fundamentals, Analysis, and Applications in Modern Wireless Trends, Int. J. Antennas and Propagation Article ID 2018527, 2017.
Ch. Luo, J. Hong, M. Amin, Mutual Coupling Reduction for Dual-Band MIMO Antenna with Simple Structure, Radio Engineering 26(1): 51-56, 2017.
M. Karimi, A. Emadeddin, A. Darvazehban, A Novel Enhanced Mutual Coupling Reduction in Patch Antenna, Int. J. Scientific & Engineering Research 8(3): 869-872, 2017.
P. Solin, Partial Differential Equations and the Finite Element Method, John Wiley & Sons, Inc., USA, 2006.
Noha A, Saber H., Dielectric Resonator Antennas on Curved Surfaces, LAP Lambert Academic Publishing, 2013.
R. Marklein. The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields, IEEE Press. pp. 201-44, 2002.
K. Buell, H. Mosallaei, and K. Sarabandi, A substrate for small patch antennas providing tunable miniaturization factors, IEEE Trans. Microw. Theory Tech. 54(1): 135-146, 2006.
F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, Equivalent-Circuit Models for the Design of Metamaterials Based on Artificial Magnetic Inclusions, IEEE Trans. Microw. Theory Tech. 55(12): 2865-2873, 2007.
J. Park, J. Louis, Q. Cheng, J. Bao, J. Smithyman, R. Liang, B. Wang, Ch. Zhang, J. S. Brooks, L. Kramer, P. Fanchasis and D. Dorough, Electromagnetic interference shielding properties of carbon nanotube buckypaper, Nanotechnol. 20(41), 415702, 2009.
G. Zhai, Z.N. Chen, and X.Qing, Enhanced Isolation of a Closely Spaced Four-Element MIMO Antenna System using Metamaterial Mushroom, IEEE Trans. Antennas Propag. 63(8), 3362-3370, 2015.
A. Dadgarpour, B. Zarghooni, B. S. Virdee,T. A. Denidni and A. A. Kishk, Mutual Coupling Reduction in Dielectric Resonator Antennas Using Metasurface Shield for 60 GHz MIMO Systems, IEEE Antennas Wirel. Propag. Lett. 16: 477-480, 2016.
S. Neogi, A. K. Bhattacharjee, P. P. Sarkar, Size reduction of rectangular microstrip antenna, Microw. Opt. Technol. Lett. 56(1): 244-248, 2014.
Y. Zhang , B. Niu , Compact Ultra wide Band (UWB) slot antenna with wideband and high isolation for MIMO applications, Prog. Electromagn. Res. C 59: 9-16, 2014.
L. Liu, S. W. Cheung , T. Yuk , Compact MIMO antenna for portable UWB applications with band-notched characteristic, IEEE Trans. Antennas Propag. 63(5): 1917-1924, 2015.