Above-light-line Nonlinear Surface Polaritons near a Conductive Interface: Threshold Case

Main Article Content

A. D. Groza

Abstract

We investigate the TM-polarized nonlinear surface polaritons (NLSP) propagating along a
guided structure consisting of a magnetic optically linear medium and a non-magnetic optically
nonlinear medium with saturable permittivity separated by a flat conductive layer of zero
thickness. We consider those values of hosting media bulk material parameters for which the
NLSP existence (for zero sheet conductance) has threshold character with respect to the waves
intensity. Based on the exact solution of Maxwell's equations we show that the energy and
propagation properties of the NLSP near the above-light-line condition (1 > n > 0) depend
considerably on the surface conductivity of the layer, even the threshold character of the NLSP
can be lost; for certain sheet conductance values these waves can exist in a linear limit. The
NLSP propagation constant is defined by both the surface conductivity and field intensity and
can be varied in a wide diapason, which gives an opportunity to obtain and control the important
for quantum information processing 0 n  condition. For a chosen value of the NLSP
propagation constant the NLSP field intensity and energy flux decries when the surface
conductivity grows; saturation of the nonlinear permittivity leads to an increase of the NLSP
energy flux compared with Kerr-like nonlinearity.

Downloads

Download data is not yet available.

Article Details

How to Cite
Groza, A. D. (2019). Above-light-line Nonlinear Surface Polaritons near a Conductive Interface: Threshold Case. Advanced Electromagnetics, 8(1), 91–98. https://doi.org/10.7716/aem.v8i1.742
Section
Research Articles

References

S. Feng, K. Halterman, Perfect Absorption in Ultrathin Epsilon-Near-Zero Metamaterials Induced by Fast-Wave Non-Radiative Modes, arXiv, 1112 0580.v1: 1-4, 2011.

A.D. Groza, Above-light-line nonlinear surface polaritons near the surface of an epsilon-near-zero metamaterial, Journal of Modern Optics, 63(2): 146-150, 2016.

View Article

Liberal, N. Engheta, Near-zero refractive index photonics, Nature Photonics, 11: 149-158, 2017.

View Article

P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, Realization of an alldielectric zero-index optical metamaterial, Nature Photonics, 7(10): 791-795, 2013.

View Article

R. Maas, J.Parsons, N.Engheta, and A.Polman, Experimental realization of an epsilon-near-zero metamaterial at visible wave lengths, Nature Photonics, 7: 907-912, 2013.

View Article

S. Kita, Y. Li, Ph. Munoz, O. Reshef, D.I. Vulis, R.W. Day, E. Mazur, and M. Lončar, On-chip alldielectric fabrication-tolerant zero-index metamaterials, Optics Express, 25(7) 8326-8334,2017.

View Article

A.M. Mahmoud, I. Liberal, N. Engheta, Dipole dipole interactions mediated by epsilon-and-munear-zero waveguide supercoupling, Optical Materials Express, 7(2) 415-424, 2017.

View Article

E.J.R. Vesseur, T. Coenen, H. Caglayan, N.Engheta, and A. Polman, Experimental verification of n = 0 structures for visible light, Physical Review Letters, 110(1): 013902-1-013902-5, 2013.

View Article

E. Özgü n, E. Ozbay, H. Caglayan, Tunable Zero-Index Photonic Crystal Waveguide for Two-Qubit Entanglement Detection, ACS Photonics, 3(11):2129-2133, 2016.

View Article

R. Sokhoyan, H.A. Atwater, Quantum optical properties of a dipole emitter coupled to an ɛ-nearzero nanoscale waveguide, Optics Express, 21(26): 32279-32290, 2013.

View Article

Alu, A. Salandrino, N. Engheta, Negative effective permeability and left-handed materials at optical frequencies, Optics Express, 14(4): 1557-1567, 2006.

View Article

H. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Three-dimensional photonic metamaterial at optical frequences, Nature materials, 7: 31-37, 2008.

View Article

B. Toal, M. McMillen, A. Murphy, W. Henderen, M. Arredondo, and R. Pollard, Optical and magnetooptical properties of gold core cobalt shell magnetoplasmonic nanowire arrays, Nanoscale, 6:12905-129011, 2014.

View Article

B. Toal, M. McMillen, A. Murphy, W. Henderen, P. Atkinson, and R. Pollard, Tuneable magnetooptical metamaterials based on photonic resonances in nickel nanorod arrays, Materials Research Express, 1: 015801-015812, 2014.

View Article

G.T. Papadakis, D. Fleischman, A. Davoyan, P. Yeh, and H.A. Atwater, Optical magnetism in planar metamaterial heterostructures, Nature Communications, 9: 296-1-296-9, 2018.

View Article

A.D. Boardman, V.V. Grimalsky, Y.S. Kivshar, S.V. Koshevaya, M. Lapine, N.M. Litchinitser, V.N. Malnev, M. Noginov, Y.G. Rapoport, and V.M. Shalaev, Active and tunable metamaterials, Laser & Photonics Review, 5: 287-307, 2011.

View Article

C.D. Giovampaola, N. Engheta, Digital metamaterials, Nature Materials, 13:1115-1121,2014.

View Article

A.M. Urbas, Z. Jacob, L.D. Negro, N. Engheta, A.D. Boardman, P. Egan, A.B. Khanikaev, V.Menon, M. Ferrera, N. Kinsey, C. DeVault, J. Kim, V. Shalaev, A. Boltasseva, J. Valentine, C. Pfeiffer, A. Grbic, E. Narimanov, L. Zhu, S. Fan, A. Alù, E. Poutrina, N.M. Litchinitser, M.A. Noginov, K.F. MacDonald, E. Plum, X. Liu, P.F. Nealey, C.R. Kagan, C.B. Murray, D.A. Pawlak, I.I. Smolyaninov, V.N. Smolyaninova, and D. Chanda, Roadmap on optical metamaterials, Journal of Optics, 18: 093005-093058, 2016.

View Article

C. Argyropoulos, P.-Y. Chen, A. Alu, Enhanced nonlinear effects in metamaterials and plasmonics, Advanced Electromagnetics, 1, 46-51, 2012.

View Article

K.S. Novoselov, A.K. Geim, S.V. Morozov, D.Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306: 666-1-666-9, 2004.6

View Article

A.D. Groza, P-polarized Nonlinear Surface Polaritons Near the Surface of an Epsilon-Near-Zero Metamaterial with Saturable Permittivity: Threshold Cases, Nonlinear Optics and Quantum Optics, 47: 247-254, 2015.

View Article

Z.K. Liu, Y.N. Xie, L. Geng, D.K. Pan, P. Song, Research of the method for measurement of graphen's carrier density, Romanian Journal of Physics, 61(5-6): 970-979, 2016.

K.M. Leung, p-polarized nonlinear surface polaritons in materials with intensity-dependent dielectric functions, Physical Review B., 32: 5093-5101, 1985.

View Article

A.D. Groza, V.L. Strizhevskii, Properties of p-polarized nonlinear surface polaritons, Physica Status Solidi (b), 163: 381-388, 1991.

View Article

Dmitruk NL, LitovchenkoVG, Strizhevskii VL. Surface polaritons in semiconductors and dielectrics, 1st ed. Kiev: Naukova Dumka; p.13, 1989.