Novel antenna concepts via coordinate transformation
Main Article Content
Abstract
Coordinate transformation is an emerging field which offers a powerful and unprecedented ability to manipulate and control electromagnetic waves. Using this tool, we demonstrate the design of novel antenna concepts by tailoring their radiation properties. The wave manipulation is enabled through the use of engineered dispersive composite metamaterials that realize the space coordinate transformation. Three types of antennas are considered for design: a directive, a beam steerable and a quasi-isotropic one. Numerical simulations together with experimental measurements are performed in order to validate the coordinate transformation concept. Near-field cartography and far-field pattern measurements performed on a fabricated prototype agree qualitatively with Finite Element Method (FEM) simulations. It is shown that a particular radiation pattern can be tailored at ease into a desired one by modifying the electromagnetic properties of the space around radiator. This idea opens the way to novel antenna design techniques for various application domains such as the aeronautical and transport fields.
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
J. B. Pendry, D. Schurig, D. R. Smith, Controlling electromagnetic fields, Science 312(5781): 1780-1782, 2006.
U. Leonhardt, Optical conformal mapping, Science 312(5781): 1777-1780, 2006.
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314(5801): 977-980, 2006.
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, Broadband ground-plane cloak, Science 323(5912): 366-369, 2009.
B. Kanté, D. Germain, A. de Lustrac, Experimental demonstration of non-magnetic metamaterial cloak at microwave frequencies, Phys. Rev. B 80, 201104(R), 2009.
W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, Optical cloaking with metamaterials, Nat. Photon. 1(4): 224-227, 2007.
J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, An optical cloak made of dielectrics, Nat. Mater. 8: 568- 571, 2009.
L. H. Gabrielli, J. Cardenas, C. B. Poitras, M. Lipson, Silicon nanostructure cloak operating at optical frequencies, Nat. Photon. 3(8): 461-463, 2009.
M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations, Photon. Nanostruct.: Fundam. Appl. 6(1): 87-95, 2008.
H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, C. T. Chan, Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Phys. Rev. Lett. 102(18): 183903, 2009.
A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett. 99(18): 183901, 2007.
M. Rahm, D. A. Roberts, J. B. Pendry, D. R. Smith, Transformation-optical design of adaptive beam bends and beam expanders, Opt. Express 16(15): 11555- 11567, 2008.
M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, D. R. Smith, Optical design of reflectionless complex media by finite embedded coordinate transformations, Phys. Rev. Lett. 100(6): 063903, 2008.
L. Lin, W. Wang, J. Cui, C. Du, X. Luo, Design of electromagnetic refractor and phase transformer using coordinate transformation theory, Opt. Express 16(10): 6815-6821, 2008.
J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B.-I. Wu, L. Ran, J. A. Kong, Application of coordinate transformation in bent waveguide, J. Appl. Phys. 104(1): 014502, 2008.
P.-H. Tichit, S. N. Burokur, A. de Lustrac, Waveguide taper engineering using coordinate transformation technology, Opt. Express 18(2): 767-772, 2010.
W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, Q. Cheng, Layered high-gain lens antennas via discrete optical transformation, Appl. Phys. Lett. 93(22): 221906, 2008.
Z. L. Mei, J. Bai, T. M. Niu, T. J. Cui, A Planar focusing antenna design using quasi-conformal mapping, PIER M 13: 261-273, 2010.
Z. H. Jiang, M. D. Gregory, D. H. Werner, Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission, Phys. Rev. B 84(16): 165111, 2011.
C. Garcia-Meca, A. Martinez, U. Leonhardt, Engineering antenna radiation patterns via quasiconformal mappings, Opt. Express 19(24): 23743- 23750, 2011.
Y. G. Ma, C. K. Ong, T. Tyc, U. Leonhardt, An omnidirectional retroreflector based on the transmutation of dielectric singularities, Nat. Mater. 8: 639-642, 2009.
T. Tyc, U. Leonhardt, "Transmutation of singularities in optical instruments," New J. Phys. 10(11): 115038, 2008.
N. Kundtz, D. R. Smith, Extreme-angle broadband metamaterial lens, Nat. Mater. 9: 129-132, 2010.
E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, J. A. Bossard, An octave-bandwidth negligible-loss radiofrequency metamaterial, Nat. Mater. 10(3): 216- 222, 2011.
Y. Luo, J. Zhang, L. Ran, H. Chen, J. A. Kong, Controlling the Emission of Electromagnetic Source, PIERS Online 4(7): 795-800, 2008.
J. Allen, N. Kundtz, D. A. Roberts, S. A. Cummer, D. R. Smith, Electromagnetic source transformations using superellipse equations, Appl. Phys. Lett. 94(19): 194101, 2009.
B. I. Popa, J. Allen, S. A. Cummer, Conformal array design with transformation electromagnetics, Appl. Phys. Lett. 94(24): 244102, 2009.
P.-H. Tichit, S. N. Burokur, A. de Lustrac, Ultradirective antenna via transformation optics, J. Appl. Phys. 105(10): 104912, 2009.
P.-H. Tichit, S. N. Burokur, D. Germain, A. de Lustrac, Design and experimental demonstration of a highdirective emission with transformation optics, Phys. Rev. B 83(15): 155108, 2011.
P.-H. Tichit, S. N. Burokur, D. Germain, A. de Lustrac, Coordinate transformation based ultra-directive emission, Elec. Lett. 47(10): 580-582, 2011.
P.-H. Tichit, S. N. Burokur, A. de Lustrac, Transformation media producing quasi-perfect isotropic emission, Opt. Express 19(21): 20551-20556, 2011.
J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, Magnetism from conductors and enhanced non-linear phenomena, IEEE Trans. Microwave Theory Tech. 47(11): 2075-2084, 1999.
D. Schurig, J. J. Mock, D. R. Smith, Electric-fieldcoupled resonators for negative permittivity metamaterials, Appl. Phys. Lett. 88(4): 041109, 2006.
A. M. Nicolson, G. F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques, IEEE Trans. Instrum. Meas. 19(4): 377-382, 1970.