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ABSTRACT This paper presents a unified transmission-line model of a multiple-shield multiconductor 
cable. This model includes, at the same time, the propagation and the cross-coupling characteristics of the 
electrical wires and the cable shields. It also includes the electromagnetic characteristics of the shields (in 
terms of transfer impedance and transfer admittance). It is derived in compliance with the multiconductor-
transmission-line theory and can be applied whatever the connection configurations at both shield extremities. 
Therefore, it makes it possible the modelling of realistic cable shield connection problems ranging from ideal 
360° shield connections to simple bonding wires. The paper proposes a physical explanation of the derived 
per-unit-length matrices. This unified model is also used to define the required conditions for calculating the 
electromagnetic coupling response of a shielded cable in a two-step approach in which the shield problem 
and the inner shield problem are solved in sequence. Finally, the paper illustrates an application of the model 
in order to evaluate the performances of a shielded cable link on electromagnetic crosstalk configurations 
with respect to several electrical bonding solutions of the shield. 

INDEX TERMS Shielded cables, Transfer impedance, Transfer admittance, Transmission-Lines, 
Multiconductor-Transmission-Lines, Electromagnetic Compatibility, EMC. 

I. INTRODUCTION 
hielded cables are classically used in all Electrical 
Wiring Interconnected Systems (EWIS) of the industry 

sector to reduce electromagnetic (EM) radiated and 
conducted emissions generated by signals flowing on 
electrical wires and to protect them from EM external 
sources. In Electromagnetic Compatibility (EMC) 
applications, transfer-impedance and transfer-admittance 
(generally called “Zt” and “Yt”) theoretical concepts are 
classically used to characterize intrinsic EM performances of 
shielded cables [1]. The measurement and theoretical 
evaluation of these cable shield parameters are the subjects 
of numerous references ([2]-[5]). By the way, some 
experimental methods are recommended today by the 
International Electrotechnical Commission (IEC) ([2], [4]) 
and discussed as IEEE Standards.  

Under some specific conditions, modelling and simulation of 
the EM coupling on a single-shield cable can be performed in 
two steps that are independently and successively solved. 
Nevertheless, this “two-step” approach assumes that the 
currents on the cable shield are much larger than the currents 
on the electrical wires. Such a property implies specific cable 
shield installation and bonding conditions at the extremities. 
In the first step of this approach, the current, Iext, and the 

voltage, Vext, induced by EM sources are determined on the 
shield. The computation can be done with a Transmission-
Line (TL) model when the shield geometry complies with 
quasi Transverse-EM (TEM) conditions. However, in the 
general case, any method, for example a full-wave 3D solver, 
can be used to obtain the response of the shield. The resulting 
induced currents along the electrical wires inside the shield, 
Iint, and voltage, Vint, are evaluated in the second step of the 
approach. This time, a TL model is fully appropriate, 
considering the cable internal geometry. The mathematical 
link between both steps is made through the induced per unit 
length (p.u.l) distributed equivalent sources applied on the 
inner TL model (voltage generators Zt.Iext and current 
generators Yt.Iext). The effectiveness of the two-step approach 
has been validated for a long time. As an example, in [6], its 
robustness has been experimentally demonstrated to predict 
the EM coupling onto a complex wiring installed in a Boeing 
707 test-bed aircraft submitted to an EM illumination.  

In real systems, the performance of cable shields with respect 
to frequency intimately depends on the quality of their 
electrical connections to the ground at their extremities. In the 
case of imperfect connections, it is well known that the two-
step approach as explained above may not be correct anymore. 
However, the theoretical conditions of applicability of the 
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two-step approach still deserve to be established. For instance, 
the cross-coupling between the shield and the electrical wires 
may indeed lead to a possible reaction of the inner wire 
currents onto the shield currents, which is entirely neglected in 
the two-step approach. 

To overcome the possible limitations of the two-step model, 
the objective of this paper is to propose a general 
Multiconductor-Transmission-Line (MTL) model of multiple-
shield bundles. We will call this model, the “unified” model. 
This model is fully consistent because: 

• It is rigorously valid for both EM emission and EM 
susceptibility problems  

• It provides the material to derive the theoretical 
conditions of application of the two-step approach  

• It does not depend on the shield electrical connections to 
the ground 

• It does not depend on the number of shields or shield 
layers (since the shield may be included in each other).  

Such a unified model has been implemented and applied at 
ONERA since 1996 in the CRIPTE computer code [7]. 
ONERA has developed this code for more than 25 years to 
evaluate EM interferences on MTL cable networks [6]. It is 
based on EM topology concepts and solves the wave form of 
the Baum-Liù-Tesche (BLT) equation on MTL Network 
(MTLN) models, in the frequency domain [8]. Numerous 
examples of applications of the CRIPTE code can be found in 
the literature ([9]-[13]). 

The theoretical derivation of the unified model has been 
published in French references ([14], [15]). The model has 
also been experimentally validated. In [14], it is used to 
accurately predict EM fields emitted by a coaxial cable with 
respect to various configurations of the shield connections to 
the ground. In [16], the measurement of various types of 
shielded cables in a triaxial cell is simulated to solve an inverse 
problem that provides a very large frequency band evaluation 
of the shield transfer impedance. In [17] and [18], the model 
is used to simulate complex aeronautical wirings containing 
different types of shielded cables; comparisons between 
measurement and calculation responses are provided 
respectively for S-parameter evaluations between wires and 
EM-field illumination responses of the electrical wiring.  

Unfortunately, as far as we know, the unified model has never 
been published in such details as in [14] and [15] in an 
English-written reference. This is why, on the one hand, from 
section II to IV, this paper provides a detailed reminder of the 
method as presented in [14] and [15]. In section II, we describe 
the derivation of the unified model formalism with all major 
mathematical steps, taking as example a simple coaxial cable. 
Section III gives a physical interpretation of the resulting 
unified model p.u.l TL-parameters. The extension to the 
general model to multiple cable shields and multiple electrical 
wires is presented in section IV.  

On the other hand, sections V and VI provide new material 
from [14] and [15]. Section V uses the unified model to derive 
analytically the theoretical conditions for which the classical 
two-step approach can be legitimately applied. This section 
specifically illustrates the impact of those assumptions on a 
test configuration reported in a recent reference ([5]). Section 
VI demonstrates, in an electrical wiring design process, the 
capability of the unified model to evaluate finely the impact of 
the quality of cable shield electrical bonding solutions on the 
EM-shielding performance. Section VII concludes on the 
relevance of the two-step and unified model approaches. 

II. SINGLE SHIELD LAYER: APPLICATION TO A 
COAXIAL CABLE 

A. TWO-REFERENCE MTL MODEL  
As a first step, we illustrate the approach with a simple 

shielded cable geometry: a one-conductor single shield cable 
and, more specifically, a coaxial cable. The cable is supposed 
installed at a constant height, h, over an infinite-dimension 
ground plane, as presented in Fig.1.  

 
FIGURE 1.  Coaxial cable configuration 

The entire problem can be decomposed into two TL models. 
The exterior domain defines the exterior-TL (Fig.2.a); the 
shield plays the role of the TL signal conductor and the ground 
plane is the TL return conductor. The interior domain defines 
the interior-TL (Fig.2.b); the inner core plays the role of the 
TL signal conductor and the cable shield is the TL return 
conductor.  

 
External domain (a) 

 

 
 

Internal domain (b) 
FIGURE 2.  Coaxial cable: exterior (left) and interior (right) TL linear-sections 
of the external domain and internal domain problems 

On the one hand, approximating the internal domain by a TL 
model is straightforward since it can be assimilated to a 
waveguide structure propagating quasi-TEM modes over a 
large frequency band. On the other hand, the external domain 
geometry is equivalent to the usual configuration of a wire 
over a ground plane, acting as an open waveguide for which 
the relevance of the TL approximation depends on the 
geometrical parameters (especially height over the ground 
plane, length and diameter of the shield) versus frequency. 
Therefore, the upper frequency limit of the validity of the 
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exterior TL model is smaller than the frequency limit of the 
interior-TL model. The outer shield geometry with respect to 
the ground will always provide the upper frequency limit of 
the unified model. Nevertheless, assuming the validity of the 
TL model for the exterior domain, it is possible to write two 
systems of two equations: 

!
− !"!"#

!#
= 𝑍$%& . 𝐼$%& − 𝑍& . 𝐼'(&

− !)!"#
!#

= 𝑌$%& . 𝑉$%& + 𝑌& . 𝑉'(&
        (1) 

 

!
− !"$%#

!#
= 𝑍'(& . 𝐼'(& − 𝑍& . 𝐼$%&

− !)$%#
!#

= 𝑌'(& . 𝑉'(& + 𝑌& . 𝑉$%&
        (2) 

We observe that (1) and (2) mathematically put together: 

• The TL p.u.l. impedances (Zext and Zint) and admittances 
(Yext and Yint) together with the cable-shield transfer 
impedance and transfer admittance Zt and Yt  

• The currents and voltages of the external domain (Iext and 
Vext) and the currents and voltages of the internal domain 
(Iint and Vint) 

We call this model the “two-reference” model because the 
voltages have two different references (the ground plane for 
the exterior-TL and the shield for the interior-TL). For this 
purpose, an external current and an internal current, flowing 
on both sides of the shield, are defined, implicitly assuming 
that the shield has a non-zero thickness. 

In both (1) and (2) systems of equations, the transfer 
parameters appear as reciprocal terms providing the cross-
coupling between both the external and internal domains. This 
formulation enables the simulation of either EM-emission or 
EM-susceptibility configurations with the same model. 
Putting together voltages and currents in vectors in (1) and (2), 
the two vector equations of the two-reference TL model of this 
two-conductor TL (the shield arbitrarily being the first 
conductor and the inner core, the second conductor) are 
obtained: 

− !
!#
*𝑉'(&𝑉$%&

+ = ,𝑍*+',-. *
𝐼'(&
𝐼$%&

+        (3) 
 

− !
!#
*𝐼'(&𝐼$%&

+ = ,𝑌*+',-. *
𝑉'(&
𝑌$%&

+        (4) 

in which [Z2ref] and [Y2ref] are the 2x2 p.u.l. impedance and 
admittance matrices of the equivalent two-reference MTL 
model of the coaxial cable, the two conductors of the MTL 
being the shield and the inner core: 

,𝑍*+',- = .𝑍'(& −𝑍&
−𝑍& 𝑍$%&

/	          (5) 
 

,𝑌*+',- = .𝑌'(& 𝑌&
𝑌& 𝑌$%&

/	         (6) 

B. SINGLE-REFERENCE MTL MODEL  

As far as EMC applications are concerned, there is a usual 
need to refer all voltages to a common reference in order to be 
able to comply with common-mode measurements and all 
common mode related issues. To this extent, equations (1) and 
(2) have to be expressed with respect to a single ground 
reference. For this purpose, we still consider our coaxial cable 
problem as a 2-conductor TL but, this time, both conductors 
are referenced to the ground plane. The shield is still the first 
conductor and the inner core still the second conductor. From 
this perspective, the voltages Vi(i=1,2) and currents Ii(i=1,2) 
defined for this single-reference model, as schemed in Fig.3, 
can be mathematically related to the voltages and the currents 
of the two-reference model: 

1

𝑉- = 𝑉'(&
𝐼- = 𝐼'(& − 𝐼$%&
𝑉* = 𝑉'(& + 𝑉$%&

𝐼* = 𝐼$%&

       (7) 

The V2 voltage, defined as the voltage between the reference 
ground plane and the core, is the sum of voltage between the 
ground plane and the shield (Vext) and the voltage between the 
shield and the core (Vint).  

Moreover, the total current on the shield, I1, is the sum of the 
shield currents flowing externally (Iext) and internally (Iint) in 
opposite directions. 

 
FIGURE 3.  Coaxial cable: single-reference TL-model  

Introducing (7) in equations (3) and (4) leads to the two 
equations of the single-reference two-conductor TL model, 
now referenced to the ground plane. The new expressions of 
the p.u.l impedance and admittance matrices of the TL 
(referenced to the ground plane) write: 

,𝑍-+',- = . 𝑍'(& 𝑍'(& − 𝑍&
𝑍'(& − 𝑍& 𝑍$%& + 𝑍'(& − 2. 𝑍&

/	     (8) 

 

,𝑌-+',- = .𝑌$%& + 𝑌'(& − 2. 𝑌& 𝑌& − 𝑌$%&
𝑌& − 𝑌$%& 𝑌$%&

/	     (9) 

III. PHYSICAL SIGNIFICANCE OF p.u.l. PARAMETERS  

Equations (5) and (6) as well as (8) and (9) show that the Zt 
and Yt parameters can be considered as MTL parameters. 
Moreover, the formulation of p.u.l impedance and admittance 
matrices (8) and (9) entirely summarizes in a compact way the 
overall shielding properties of shielded cables. In this section, 
we want to show that such a MTL formulation entirely 
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complies with other well-known knowledge or provides useful 
information on the way the transfer parameters affect the EM 
shielding mechanisms of shielding cables. For this purpose, 
we take again the example of the coaxial cable. 

A.  P.U.L. DC RESISTANCE MATRIX 
From (8), the p.u.l. DC-resistance matrix [R1ref], value of 

the p.u.l. impedance matrix at f=0 (or limit of its real part when 
f goes to 0), can be expressed as a function of the p.u.l. DC-
internal-resistance, Rint, the DC-external-resistance, Rext and 
the DC-transfer-resistance of the shield, Rt, as: 

,𝑅-+',- = . 𝑅'(& 𝑅'(& − 𝑅&
𝑅'(& − 𝑅& 𝑅$%& + 𝑅'(& − 2. 𝑅&

/	     (10) 

Let us now suppose a 1m-long coaxial cable with both the core 
and the shield short-circuited to the ground at the right hand 
side to force the total current to return in the ground plane as 
expected in our single-reference model. At f=0, we can derive 
a pure resistive equivalent electrical circuit scheme as in Fig.4, 
in which we introduce the DC-resistances of each equivalent 
conductor of the system: 

!  Rg, the p.u.l DC resistance of the ground plane, 
!  Rs, the p.u.l DC resistance of the shield, 
!  Rc, the p.u.l DC resistance of the core. 

 
FIGURE 4.  Equivalent resistive electrical circuit model of the 1m-long short-
circuited coaxial cable problem 

Vi(i=1,2) and Ii(i=1,2) are the TL voltages and currents as defined 
in the single-reference MTL model. The circuit can be seen 
from the left hand side as a two-port system. The DC 
relationship between voltages and currents of this circuit 
network writes: 

.𝑉-𝑉*
/ = .

𝑅. + 𝑅/ 𝑅/
𝑅/ 𝑅0 + 𝑅/

/ . .𝐼-𝐼*
/	      (11) 

and provides another expression of the resulting resistance 
matrix referenced to the ground plane, [R1ref]: 

,𝑅-+',- = .𝑅. 0
0 𝑅0

/ + .
𝑅/ 𝑅/
𝑅/ 𝑅/

/	      (12) 

in which: 

• The p.u.l. DC resistance of the reference, Rg appears on 
the extra-diagonal terms, 

• The diagonal terms are the sum of the reference p.u.l. 
DC-resistance and the p.u.l. DC-resistance of either the 
shield or the core. 

Besides, we can express Rint and Rext, the p.u.l DC-resistances 
of the two-reference MTL model. For the internal-TL, the 
reference is the shield, so: 

𝑅$%& = 𝑅0 + 𝑅.        (13) 

For the external-TL, the reference is the ground plane, so: 

𝑅'(& = 𝑅. + 𝑅/        (14) 

Equaling (10) and (12) implies Rt=Rs , that is to say, the well-
known result that the p.u.l. transfer resistance, Rt, is equal to 
the DC transfer resistance of the shield, Rs. The DC part of (8) 
therefore complies with the underlying DC electrical circuit of 
the MTL. 

B.  P.U.L. INDUCTANCE MATRIX 
In the single-reference model, the p.u.l. inductance matrix 

[L1ref] is obtained from the high frequency limit of the 
imaginary part of the p.u.l impedance matrix, [Z1ref], divided 
by the pulsation, " =2πf. By introducing the internal and 
external inductance terms, Lint and Lext, and the transfer 
inductance Lt term in (8), the p.u.l. inductance matrix writes: 

,𝐿-+',- = .𝐿-- 𝐿-*
𝐿*- 𝐿**

/ = . 𝐿'(& 𝐿'(& − 𝐿&
𝐿'(& − 𝐿& 𝐿$%& + 𝐿'(& − 2. 𝐿&

/	
         (15) 

The p.u.l. inductance matrix can be understood from the 
definition of each (Lij,(i,j=1,2)) term introducing the definition of 
the p.u.l. magnetic fluxes as: 

𝐿-- =
1&
)&
7
)'23

 and  𝐿-* =
1&
)'
7
)&23

      (16) 

𝐿*- =
1'
)&
7
)'23

 and  𝐿** =
1'
)'
7
)&23

      (17) 

where # 1 and # 2 are the magnetic fluxes between conductor 1 
(conductor 2 respectively), and the reference ground plane 
(Fig.5). These two fluxes can be decomposed as elementary 
fluxes: 

Φ- = Φ'(& −Φ45$%&       (18) 

Φ* = Φ'(& −Φ45$%& +Φ$%& −Φ45'(&     (19) 

with: 

• Φ'(& = 𝐿'(& . 𝐼'(&: flux outside the shield, 
• Φ45$%& = 𝐿& . 𝐼$%&: exterior flux due to internal magnetic 

field leakages through the shield, 
• Φ$%& = 𝐿$%& . 𝐼$%&: flux inside the shield, 
• Φ45'(& = 𝐿& . 𝐼'(&: interior flux due to external magnetic 

field leakages through the shield. 

  
FIGURE 5. Physical significance of ! 1 and ! 2 in the single-reference model 
of the coaxial problem 
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When no current is flowing in the core (I2=0, I1=Iext and 
Iint=0), there is no leakage outside the shield and the magnetic 
field inside the shielded-cable is only due to leakage of the 
external magnetic field. (18) and (19) write as: 

Φ-⟩)'23 = Φ'(& = 𝐿'(& . 𝐼- = 𝐿--. 𝐼-      (20) 

Φ*⟩)'23 = 𝐿'(& . 𝐼- − 𝐿& . 𝐼- = 𝐿*-. 𝐼-       (21) 

When no current is flowing in the shield (I1=0, I2=Iint), the 
current flowing on the core (I2=Iint) is equal to the current Iext. 
These two currents (Iint=Iext), generate simultaneously intrinsic 
fluxes and leakage fluxes in the internal and in the external 
domains. Then (18) and (19) write as: 

Φ-⟩)-23 = 𝐿'(& . 𝐼* − 𝐿& . 𝐼* = 𝐿-*. 𝐼*      (22) 

Φ*⟩)-23 = 𝐿'(& . 𝐼* − 𝐿& . 𝐼*+𝐿$%& . 𝐼* − 𝐿& . 𝐼* = 𝐿**. 𝐼*    (23) 

The magnetic field based equations, (16) to (23), verify the 
single-reference MTL inductance matrix model (15). The 
transfer inductance, Lt, characterizes the leakage of the 
magnetic field through the shield. Besides, when the shield is 
ideal (no Lt), the remarkable inductance property of shielded 
cables, L11=L12, is also verified. 

C.  P.U.L. CAPACITANCE MATRIX 
In the single-reference model, the p.u.l. capacitance matrix 

[C1ref] is obtained from the high frequency limit of the 
imaginary part of all terms of the p.u.l. admittance matrix, 
[Y1ref], divided by " =2πf . By introducing the internal and 
external p.u.l. capacitance terms, Cint and Cext, and the p.u.l. 
transfer capacitance, Ct, in (9), the p.u.l capacitance matrix 
writes: 

,𝐶-+',- = .𝐶-- 𝐶-*
𝐶*- 𝐶**

/ = .𝐶$%& + 𝐶'(& − 2. 𝐶& 𝐶& − 𝐶$%&
𝐶& − 𝐶$%& 𝐶$%&

/	

         (24) 

Cext represents the p.u.l. capacitance between the shield and the 
reference plane and Cint, the p.u.l capacitance between the core 
and the shield. 

Similarly as done for the resistance matrix assessment, we 
consider a 1m-long cable. We leave this time both conductors 
of the coaxial TL-equivalent problem of the right hand side in 
open circuit, as described in Fig. 6. As for a usual two-port 
system seen from the left hand side of the TL, the circuit can 
be modelled as an equivalent capacitance network with an 
“effective” equivalent capacitances Ceij, placed between each 
pair of conductors i and j.  

 

FIGURE 6. Equivalent circuit model of the 1m-long  open-circuited coaxial 
cable problem 

The resolution of Fig.6 circuit network provides the following 
matrix relationship between the voltages and the currents: 

.𝐼-𝐼*
/ = 𝑗𝜔 .

𝐶-*' + 𝐶--' −𝐶-*'
−𝐶-*' 𝐶-*' + 𝐶**'

/ . .𝑉-𝑉*
/	     (25) 

 
Equaling the terms of (24) and (25), the p.u.l. transfer 
capacitance, Ct, appears as an effective capacitance directly 
connecting the core and the reference ground plane. It 
represents the leakages of the electric field through the shield. 
Because of these leakages, the p.u.l. effective capacitances are 
equal to the initial Cext and Cint minus the p.u.l transfer 
capacitance Ct. Finally the cross-section circuit of the coaxial 
cable over the ground plane can be summarized under Fig.7’s 
circuit capacitance network model. 

 
FIGURE 7. Effective capacitance model of the coaxial cable over a ground 
plane 

IV. GENERALIZATION OF THE UNIFIED MODEL TO 
SEVERAL SHIELD LEVEL MULTICONDUCTOR CABLES 

A. ONE-SHIELDING LEVEL MULTICONDUCTOR CABLE  
Several multiconductor shielded cables (one shielding level 

only, i.e. no other shields are included inside the cable shields) 
are now considered. In this case, the previous example of the 
coaxial cable can be easily generalized to multiconductor 
cables by replacing all scalar parameters by matrices and 
vectors in the systems of equations (1) and (2). Therefore, still 
having only one shield level, it is possible to consider Ns 
shielded cables with Nw internal conductors; (3) and (4) 
relationships remain the same. To obtain the multiple 
reference model extended to MTLs, we can first gather all the 
shield equivalent wires for having an exterior-MTL, 
referenced to the ground plane, and characterized by Ns$Ns 
[Zext] and [Yext] p.u.l. impedance and admittance matrices. 
Second, we can gather the Nw interior-MTLs p.u.l. impedance 
and admittance matrices referenced to their own cable-shield, 
building thereby two large [Zint] and [Yint] p.u.l. impedance and 
admittance matrices. The p.u.l. impedance matrix, [ZMref] and 
p.u.l admittance matrix [YMref] of the multiple-references 
models are then obtained by concatenating the interior and 
exterior MTL matrices as previously done for the coaxial cable 
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problem. Then [ZMref] and [YMref] synthetize the whole MTL 
model and are organized in 4 sub-blocks as follows: 

,𝑍6+',- = .
[𝑍'(&] −[𝑍&]
−[𝑍&] [𝑍$%&]

/	      (26) 

,𝑌6+',- = .
[𝑌'(&] [𝑌&]
[𝑌&] [𝑌$%&]

/       (27) 

where [Zext] (or [Yext]) and [Zint] (or [Yint]) respectively appear 
in the diagonal upper and lower blocks. The off-diagonal 
blocks [Zt] and [Yt] represent the cross-coupling between the 
external domain and the internal domains. They contain the 
transfer impedance and admittance terms of each of the Ns 
shields. 

The associated single-reference unified model can be easily 
obtained by applying a base transformation, defined as a 
generalization of the scalar relationships in (7), between the 
voltage and current vectors in the multiple-reference system, 
[VMref], [IMref], and the voltage and current vectors in the single-
reference system, [V1ref] and [I1ref]. This transformation 
involves [Pv] and [Pi], normed passing matrices relating those 
vectors, for voltages and currents respectively. We have:  

,𝐼-+',- = [𝑃$]. ,𝐼6+',-       (28) 

,𝑉-+',- = [𝑃7]. ,𝑉6+',-       (29) 

Since those matrices are real (filled with “0”, “1” and “-1” 
terms) and normed, the inverse of the passing matrices for 
voltages and currents can be obtained from their transposed 
matrices as: 

[𝑃7]5- = [𝑃$]8        (30) 

[𝑃$]5- = [𝑃7]8        (31) 
 
If we introduce (28) to (31) into (3) and (4), we can write the 
single-reference p.u.l. impedance and admittance matrices as 
a function of the [ZMref] and YMref] p.u.l. impedance and 
admittance matrices: 
 

,𝑍-+',- = [𝑃7]. ,𝑍6+',-. [𝑃$]8      (32) 

,𝑌-+',- = [𝑃$]. ,𝑌6+',-. [𝑃7]8      (33) 

B. GENERALIZATION TO SEVERAL SHIELD LEVELS 
Relations (32) and (33) have been derived for a single cable 

shield level only. Now, the process is extended to several 
shield levels (when shields are included into other shields). 
The derivation of the unified MTL model can be obtained 
from an iterative process consisting in the following steps: 

• Decomposition of the problem in cable shield levels 
(CSLi), 

• Ordering of the shield levels from the smallest to the 
largest: CSL1, CSL2, … CSLi, CSLi+1…, the smallest 
index being the deepest in terms of inclusion of shields, 

• Generation of the ith MTL model at each CSLi, 

• For each pair {CSLi, CSLi+1}, application of the single 
reference model and repetition of this model by 
climbing up to the upper CSLk.  

Such an iterative process can be done step-by-step or in a 
global explicit formulation. As a final result, equations (32) 
and (33) still apply but the passing matrices, [Pv] and [Pi] are 
transformed accordingly to the CSL ordering. 

C.  EXAMPLE 
In order to illustrate how the one-reference p.u.l. impedance 

and admittance matrices, [Z1ref] and [Y1ref] are built, we 
consider the example schemed in Fig.8. It consists of two 
coaxial cables over a ground plane. The two shields are named 
S1 and S2: their respective internal cores are named C1 and 
C2. 

 
FIGURE 8. Example of two coaxial cables in parallel to a ground plane 
(geometrical cross-section) 

The unified model is made of four equivalent wires that are 
ordered as follows: {S1, S2, C1, C2}. The two-reference p.u.l. 
impedance matrix [ZMref] can be written as in (26): 

,𝑍6+',- = @

𝑍9-,9- 𝑍9-,9*
𝑍9*,9- 𝑍9*,9*

−𝑍&- 0
0 −𝑍&*

−𝑍&- 0
0 −𝑍&*

𝑍$%&- 0
0 𝑍$%&*

					A	   (34) 

Where: 
• Zt1 and Zt2 are the p.u.l. transfer impedances of the 2 

coaxial cables, 
• Zint1 and Zint2 are the p.u.l. internal domain impedances of 

the cores C1 and C2, of the two coaxial cables, 
referenced to the S1 and S2 shields, 

!" .
𝑍9-,9- 𝑍9-,9*
𝑍9*,9- 𝑍9*,9-

/	is the p.u.l. impedance block matrix of 

the external-domain MTL, constituted by the two 
shields S1 and S2, with respect to the ground plane. 

Note that the associated p.u.l. admittance matrix [YMref] has 
the same structure; the only difference is that the terms –Zti 
are replaced by +Yti. 

The passing matrices, [Pv]’ and [Pi]’, write as follows (before 
normalization): 

[𝑃7]′ = C
1 0
0 1

0 0
0 0

1 0
0 1

1 0
0 1

	E	    (35) 
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[𝑃$]′ = C
1 0
0 1

−1 0
0 −1

0 0
0 0

1 0
0 1

	E     (36) 

 
The last step consists in applying (32) and (33) in order to 
obtain the one-reference p.u.l. impedance and admittance 
matrices, [Z1ref] and [Y1ref]. We obtain:  
 
[𝑍! "#$ ] =

⎣
⎢
⎢
⎡

𝑍%! &%! 𝑍%! &%' 𝑍%! &%! − 𝑍( ! 𝑍%! &%'

𝑍%' &%! 𝑍%' &%' 𝑍%! &%' 𝑍%' &%' − 𝑍( '

𝑍%! &%! − 𝑍( ! 𝑍%' &%! 𝑍%! &%! − 2𝑍( ! + 𝑍)*( ! 𝑍%! &%'

𝑍%' &%! 𝑍%' &%' − 𝑍( ' 𝑍%' &%! 𝑍%' &%' − 2𝑍( ' + 𝑍)*( ' ⎦
⎥
⎥
⎤
			  (37) 

 
[𝑌! "#$ ] =

J

𝑌%! &%! − 2𝑌( ! + 𝑌)*( ! 𝑌%! &%' 𝑌( ! − 𝑌)*( ! 𝑂
𝑌%' &%! 𝑌%' &%' − 2𝑌( ' + 𝑌)*( ' 0 𝑌( ' − 𝑌)*( '

𝑌( ! − 𝑌)*( ! 0 𝑌)*( ! 0
0 𝑌( ' − 𝑌)*( ' 0 𝑌)*( '

M											  (38) 

 

V. CONDITIONS OF APPLICABILITY OF THE TWO-STEP 
APPROACH 

As mentioned in the introduction, the widespread way to 
compute induced currents/voltages response on internal 
conductors of shielded cables consists in the two-step 
approach, which is legitimate under specific assumptions only 
(see Section I). Since the unified model of multiconductor 
shielded cables is general, we will use it in the following to 
validate theoretically the domain of applicability of this two-
step approach. In what follows, we will address only sources 
induced from Zt since the sources coming from Yt can be 
generally neglected compared to the sources coming from Zt. 
We will then illustrate this domain of applicability by an 
example. 

A. THEORETICAL DERIVATIONS 
Let us consider the one-conductor single shield cable 

problem in Fig.9, similar to the one in Fig.1. We have 
introduced the current and voltage notations of the single-
reference unified model. 

 
FIGURE 9. One-conductor shielded cable used for the derivation of the 
two-steps approach application domain 

 
The length of the cable is ℓ. [I(z)] and [V(z)] are respectively 
the current and voltage vectors at a position z along the cable. 
Both vectors are constituted of the currents I1(z), I2(! ) on the 
one hand and the voltages V1(z), V2(! ) on the other hand, 
respectively on both the shield and the core TL-equivalent 
wires:  

[𝐼(𝑧)] = .𝐼-
(𝑧)

𝐼*(𝑧)
/			and			[𝑉(𝑧)] = .𝑉-

(𝑧)
𝑉*(𝑧)

/    (39)	

The currents and voltages respectively take the values I1(0), 
I2(0), V1(0), V2(0) at the origin of the TL, z=0 (left hand side), 
and I1(ℓ), I2(ℓ), V1(ℓ), V2(ℓ) at the remote end of the TL, z= ℓ, 
(right hand side). 

To have a general derivation of the solution, we consider that 
the cable is illuminated by an incident EM field (i.e. a field in 
the absence of the cable) which tangential component along 
the cable is E’inc(z). Referring to Agrawal’s Field-to-
Transmission-Line (FTL) model ([10], [15], [19]), this 
distributed tangential component is equal to the distributed 
voltage generators induced on all equivalent wires of the MTL 
model, i.e. on both the shield and the core equivalent wires. If 
we make the reasonable assumption that both wires are co-
localized, those voltage generators are equal on both MTL 
equivalent wires. Note also that the application of Agrawal’s 
FTL model implies that the voltages Vi(z) are not defined as 
“total” voltages but “scattered” voltages (derived from the 
scattered electric field only). However, the currents Ii(z) 
remain the total currents and this restriction does not change 
the nature of the conclusions on the model. 

Consequently, the first MTL equation writes: 

 !["(#)]
!#

= −[𝑍]. [𝐼(𝑧)] + [𝐸$%0P (𝑧)]  (40)	

where [Z] is the p.u.l. impedance of the MTL model as in (8).  

The derivation of the two-step approach will be made at low 
frequency, under the resonance regime of the TL for which all 
variables can be considered as not influenced by the 
propagation characteristics of the MTL. We will then see that 
the conclusions for the conditions of application of the 
approach can be generalized to the resonant frequency regime 
of the cable.  

Under the low frequency approximation, (40) may then be 
developed as: 

.𝑉-
(0) − 𝑉-(ℓ)

𝑉*(0) − 𝑉*(ℓ)
/=[𝑍].	ℓ.	.𝐼-(ℓ)𝐼*(ℓ)

/ − .𝐸$%0𝐸$%0
/    (41)	

where the total induced voltage Einc comes from the integration 
of the distributed generators E’inc(z) over ℓ. 

𝐸$%0 = ∫ 𝐸′$%0(𝑧). 𝑑𝑧
ℓ
3       (42) 

We now consider specific load conditions at the extremity of 
the shielded-cable. The shield is short-circuited at both 
extremities to cope with required installation conditions. The 
core is short-circuited at position z=0 and loaded by an 
impedance Zcore at position z=ℓ." Fig. 10 represents the 
electrical model of the shielded-cable in this load 
configuration that imposes the conditions 
V1(0)=V1(ℓ)=V2(0)= 0. I1 and I2 are the simplified notations 
for the low frequency approximation currents that can be 
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supposed constant along ℓ: I1=I1(0)=I1(ℓ) and I2=I2(0)=I2(ℓ). 
Thereby, (41) now writes: 

 

. 0
−𝑉*(ℓ)

/=[𝑍].	ℓ.	.𝐼-𝐼*
/ − .𝐸$%0𝐸$%0

/               (43) 

 

 
FIGURE 10.  Low frequency circuit model of the shielded-cable with specific 
load configuration 

The development of (43), using (8) gives: 

𝐸$%0 = 𝑍'(&ℓ𝐼- + (𝑍'(& − 𝑍&)ℓ𝐼*      (44) 

−𝑍0R+'𝐼*	 = −𝑍&ℓ𝐼- + (𝑍$%& − 𝑍&)ℓ𝐼*     (45) 

The two-step approach implies that there is no reaction from 
the internal current on the core over the current on the shield. 
Thereby, the following conditions must be fulfilled from (44): 

‖𝑍'(&𝐼-‖ ≫ ‖(𝑍'(& − 𝑍&)𝐼*‖      (46) 

From (45) we may write: 

𝐼*	 =
S#ℓ)&

S()*$T(S!"#5S#)ℓ       (47) 

The combination of (46) and (47) provides the general 
condition on the various impedances involved in the problem 
to apply the two-step approach:  

R𝑍'(& . S
S()*$
ℓ
+ 𝑍$%& − 𝑍&7R ≫ ‖(𝑍'(& − 𝑍&). 𝑍&‖    (48) 

At DC, using (13), (14) and notations of Fig.10, condition (48) 
leads to: 

T𝑅. + 𝑅/U *
UVW
+,

X'(S()*$)

ℓ
+ 𝑅0+ ≫ 𝑅/𝑅.     (49) 

Since Rs+Rg>Rg, condition (49) will be verified whatever the 
value of the ground resistance, Rg if: 

*
UVW
-→/

X'(S()*$)

ℓ
+ 𝑅0+ ≫ 𝑅.       (50) 

(50) now copes with the agreed wiring design practice that the 
sum of the DC limit of the common-mode end-loads and the 
total resistance of the core must be much larger that the total 
resistance of the shield.  

At higher frequency (but before the propagation regime), 
when the inductance contribution to the impedance dominates 
the resistance, condition (48) for applying the two-step 
approach can be rewritten as: 

𝑳𝒆𝒙𝒕 *
𝑳𝒊𝒎
𝑯𝑭

𝑰𝒎(𝒁𝒄𝒐𝒓𝒆)

𝓵
+ 𝑳𝒊𝒏𝒕 − 𝑳𝒕+ ≫ (𝑳𝒆𝒙𝒕 − 𝑳𝒕). 𝑳𝒕    (51) 

Since the transfer inductance of a shielded cable used for EM 
shielding, Lt, is much lower than the external inductance, Lext, 
(51) can be simplified by: 

*
𝑳𝒊𝒎
𝑯𝑭

𝑰𝒎(𝒁𝒄𝒐𝒓𝒆)

𝓵
+ 𝑳𝒊𝒏𝒕+ ≫ 𝟐𝑳𝒕     (52) 

At high frequency, condition (52) implies that the total 
equivalent inductance of the inner TL must be much larger 
than two times the total transfer inductance of the shield. This!
condition!generally makes the!two-step approach valid at high 
frequency as well, even in the resonance region, provided that 
the current on the shield is correctly estimated. 

 

B. TWO-STEP APPROACH TL MODELS 
Under the condition (46), (44) becomes: 

𝐸$%0 = 𝑍'(&ℓ𝐼-        (53) 

which means that the calculation of the shield current at the 
first step can be made with the model of the exterior TL alone 
excited by the incident field equivalent generators. 

However, (45) deserves to be derived independently at DC and 
HF limits in order to identify the appropriate TL model of the 
second step. We respectively find: 

𝑅&𝐼- =
UVW
-→/

X'(S()*$)

ℓ
𝐼*	 + 𝑅0𝐼*       (54) 

and 

𝑗𝜔𝐿&𝐼- =
UVW
67

)c(S()*$)

deℓ
𝐼*	 + 𝑗𝜔(𝐿$%& − 𝐿&)𝐼* ≈

																																													
UVW
67

)c(S()*$)

deℓ
𝐼*	 + 𝑗𝜔𝐿$%&𝐼*    (55) 

On the one hand, at DC, (54) shows that the TL model is based 
on the resistance of the core, Rc, only (and not on the addition 
of Rt, the cable shield resistance, as the interior-TL model 
would have required it). On the other hand, the right hand side 
of (55) is obtained with the already mentioned reasonable 
assumption that Lint>>Lt . In this case, the model involves the 
interior-TL inductance, Lint. Besides, both (54) and (55) 
indicate that the source term of the second step TL model is 
equal to Zt.I1, therefore depending on the current calculated at 
the first step. With respect to these conclusions, Fig. 11 
summarizes the p.u.l. circuit cells of the two TL models to be 
applied in the two-step approach. 
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FIGURE 11. The two-step approach TL circuit cell model. Above, TL-cell for 
the calculation of the shield current Is. Below, TL-cell for the calculation of the 
core current Ic. 

C. APPLICATION EXAMPLE 
As an illustration, we consider the measurement set-up 

proposed in [5] for measuring the transfer impedance of a 
RG058 coaxial cable (Fig. 12).  

 
FIGURE 12.  Zt scalar measurement setup applied on a RG058 cable (from 
[5]). 

The shielded cable, of length L, is installed over a perfectly 
conducting ground, between two metallic plates at a height of 
h=10cm. The shield ends are perfectly connected to the two 
plates. The inner conductor is connected to a 50 % resistance 
on the right hand side plate and is short-circuited to the left 
hand side plate. In this section, the first objective is to validate 
our unified model by simulating the reference [5] “scalar 
measurement setup” with the CRIPTE code (see Section I). 
The principle of the measurement is very classical and 
obviously based on the two-step approach (the notations are 
intentionally the same as in [5]): 

!" The current on the shield, Ish, is injected with a frequency 
generator driving a current injection probe through an 
amplifier. Ish is measured with a current measurement 
probe connected to a spectrum analyzer  

!" The voltage on the inner conductor, Vint(0), is measured 
with a spectrum analyzer 

!" The module of the transfer impedance, Zt, is obtained from 
the classical formula: 

! ! "
" fgh#$%

&'(ij
         (56) 

in which L is the length of the cable. 

The RG058 cable characteristics provided in [20] are 
sufficient to derive the one reference MTL model of the cable: 

!" p.u.l. resistance of the inner core = 39.2 m%/m 
!" p.u.l. capacitance = 100 pF/m  
!" Characteristic impedance = 50 % 
!" Approximate inner conductor diameter = 0.9 mm 
!" Approximate insulation (and shield) diameter = 2.95 

mm 
!" Velocity ratio=66% 

With respect to [5], the signature of the measured transfer 
impedance indicates that Zt can be simplified as: 

𝑍& = 𝑅& + 𝑗𝜔𝑅𝐿&,         (57) 

with: 

!" Rt= 14 m%/m 
!" Lt= 1 nH/m 

Such a simplification is hopefully possible here because [5] 
does not provide any information on the phase of Zt. 

Besides, the authors mention that the “presence or the absence 
of the measuring probe during the measurement of Vint(0) has 
no particular influence on the results”. Therefore, we can 
model the current injection probe as an ideal transformer. For 
this, we assume that its primary circuit produces an ideal 
voltage generator E on any secondary wire circuits made by 
the cables under tests [21] and we can assume no reaction of 
this secondary circuit on the primary circuit. Since the coaxial 
cable MTL model is made of two equivalent wires (the inner 
core and the shield), the voltage generator E must be applied 
on both wires as shown in Fig. 13 (note the analogy with 
Agrawal’s model in Fig. 10 where the current injector can be 
seen as a local incident tangential field transducer). Finally, 
equation (56) being independent of E, we can set it arbitrarily 
to E=1V in our MTL simulations. 

 
FIGURE 13. Equivalent circuit model of the Zt scalar measurement setup 
applied on the RG058 cable (from [5]). 

In Fig.14, we show the simulation results of Zt obtained with 
the unified model and the classical two-step model. The 
perfect accordance with [5] validates our unified model. In this 
measurement configuration, we also verify that the 
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assumption of the two-step approach, on which the 
measurement technique is based, is logically fulfilled.  

 
FIGURE 14. Zt simulation with the reference [5] scalar measurement setup. 
Unified model and two-step approach 

In the following, we investigate the second objective of this 
section: analyze the impact of the conditions of application 
of the two-step approach. For this, we consider two 
additional specific test configurations based on Fig.12 for 
stressing the RG058 cable and we compute Vint(0), both with 
the two-step approach and with the unified model: 

!" Configuration B: the shield is supposed disconnected 
from the right hand side plate (the connection is 
supposed having been damaged) and the inner conductor 
is still connected to R=50 %. In this configuration, the 
assumptions to apply the two-step approach are clearly 
not satisfied. 

!" Configuration C: the shield is supposed having been 
damaged, which results in a new transfer resistance 
value, Rt=40 m%/m, and a new transfer inductance value, 
Lt=2 nH/m. The shield is still supposed ideally grounded 
at its extremities. However, R, the right-hand side end 
resistance of the core is now set to a very low value, R=1 
m%. In this configuration, the resistance of the shield is 
of the same order of value as the resistance of the core, 
so we can anticipate that the two-step approach might be 
defaulting. 

The resulting computed voltages on the core, Vint(0), are 
plotted in Fig. 15.  

As a reference, the initial ideal configuration A of [5] (shield 
ideally grounded, core loaded by 50 %) labelled by “Conf A” 
is also plotted. Comparisons between both types of models, 
two-step and unified, (respectively labelled “2-Step” and 
“Unified”) are consistent with the expectations regarding the 
conditions of applicability of the two-step approach. In 
configuration A only, the two-step approach perfectly fits with 
the unified model approach over the whole frequency range, 
which explains why the Zt results are in perfect agreement with 
[5]. In configuration C (labelled “Conf C”), the two-step 
approximation provides in average good results but we note a 

discrepancy in a frequency band for which either the resistance 
or the inductance dominate. In configuration B (labelled “Conf 
B”), the two-step condition is not verified due to the 
disconnection of the shield to the ground and the two models 
do not match. Note that, in configuration B, since the shield is 
disconnected, the EM shielding effect is null and, at low 
frequency, the induced voltage on the core computed by the 
unified model is, as expected, logically equal to E=1V.  

 
FIGURE 15. Voltage induced on the core Vint(0) – Unified and two-step 
model results of various test setup configurations 

VI.  EM SHIELDING PERFORMANCE AS A FUNCTION 
OF THE SHIELD END ELECTRICAL CONNECTIONS  

A. OBJECTIVE 
The efficiency of a shielded cable link depends on several 

parameters. Among them, the most significant ones are the 
shield properties, the shielding effectiveness of connectors, 
and the electrical connection of the shield to the connector 
chassis. The objective, here, is to show how the unified single-
reference shielded cable model can be used to evaluate the 
performances of shielded cable links as a function of the nature 
of the shield connections at the extremities. Assuming the 
connectors are perfectly grounded, the ideal shield connection 
is the 360° connection around the surface of the connector in 
order to extend the shield geometry up to the ground. Very 
often, due to installation constraints, connector typologies or 
maintenance requirements, such an ideal electrical connection 
is not always feasible and has to be replaced by a bonding 
wire. Sometimes, even worse solution, there are no electrical 
connections to the ground at the extremities of the shields. 
Hereafter, we will analyze the EM shielding effectiveness to 
demonstrate the impact of such shield connections on generic 
configurations. As in section V-C, the demonstration will be 
made by numerical MTL simulations performed with the 
CRIPTE code (see section I) based on the unified model. 

B.  DESCRIPTION OF THE TEST CASE 
As an illustration, we consider the generic test installation 

illustrated in Fig. 16. Two types of Shielded Test Cables, STCi 
(STC1 or STC2), are installed in turn at a height of h=10 cm 
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over a ground plane, between two perfectly conducting 
metallic plates, P1 and P2 (shown in transparency in the 
figure). The distance between P1 and P2 is ℓ=1m. We suppose 
that the ground plane has an equivalent ground resistance, 
Rg=10 m%/m between P1 and P2. A bare wire W1 is running 
in parallel to both STCi at the same height h and at a distance 
d=5 mm. W1 is short-circuited to the ground and, passing 
through a hole in P1, is connected to the ground with a R=50 
% resistance on the outer face of P1. On this outer face of P1, 
a voltage generator E=1V is applied to drive a current on W1 
and makes it act as an EM field illuminator on both STCi.  

 
FIGURE 16. Scheme of the Shielded Test Cable installation. The black dots 
figure perfect connections; the absence of black dots figure the possibility of 
imperfect connections. 

As shown in Fig.17, both STCi are made as follows: 

!" The Shielded Test Cable STC1 consists of a wire, W2, 
surrounded by a single shield, S1 (single shield test cable 
configuration),  

!" The Shielded Test Cable STC2 consists of the previous 
STC1 surrounded by a second shield S2 (overshielded 
test cable configuration). 

W2 is short-circuited on P1 and, passing through a hole in 
P2,  is connected with a R=50 % resistance to the ground on 
the outer face of P2. Both the resistances R and the voltage 
generator E are supposed to be infinitely small compared to 
the 1 m distance between P1 and P2. 

 
!"  and !#  

alone 
 

$%&"'(!#  in 
shielded 

configuration 

 
$%&#'(!#  in overshielded 

configuration 

 

FIGURE 17. Geometrical cross-sections of W1/W2, STC1 and STC2  

W1 and W2 are considered to be two identical and parallel 
wires with the following characteristics: 
!" Radius of the wires = 0.25 mm 
!" Radius of the wire dielectric insulators = 0.55 mm  
!" Relative dielectric permittivity of the dielectric 

insulators = 2.3 
!" p.u.l. resistance of the wires = 117.5 m%/m 

The characteristics of the first shield, S1, are: 
!" Radius of S1 = 1.1 mm 
!" Transfer resistance of S1: Rt = 70 m%/m  

!" Transfer inductance of S1: Lt = 3 nH/m 

The characteristics of the second shield, S2, are:  
!" Radius of S2 = 2.29 mm 
!" Transfer resistance of S2: Rt = 7 m%/m,  
!" Transfer inductance of S2: Lt = 4 nH/m 
!" Relative dielectric permittivity of the medium between 

S2 and S1 = 1.0 

Three configurations of shield electrical connections at the 
extremities are considered for STC1 and STC2 (Fig. 18. and 
Fig. 19): 

 
FIGURE 18. Electrical shield connections at the extremities for the Shielded 
Test Cable STC1 

 
FIGURE 19.  Electrical shield connections at the extremities for the Shielded 
Test Cable STC2  

!" Ideal end connections: both extremities of S1, for STC1, 
and of S1 and S2, for STC2, are ideally short-circuited 
(360° connection) on P1 and P2. 

!" Connection with a bonding wire: the external shield is 10-
cm shortened away from the P2-end and connected to the 
ground via a 10-cm straight bonding wire connected to P2. 
Along this 10-cm distance, the cable is not shielded (for 
STC1) or not overshielded (for STC2) anymore. At the 
opposite extremity (P1), the connection is always ideal. 
For STC2, S1 is supposed to be always ideally short-
circuited to P1 and P2 at both extremities. The bonding 
wire being an extension of the external shield, we 
approximate its p.u.l resistance as the same as the external 
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shield. Along this 10 cm distance, EM cross-coupling must 
be considered between W1, W2, the bonding wire and, 
eventually, S1, in the case of STC2. 

!" Deteriorated connection: the external shield is set in open 
circuit 10 cm away from its far-end extremity at P2 for 
both STC1 and STC2. Along this 10-cm distance, W2 is not 
shielded or not overshielded anymore. At the opposite 
extremity the connection is ideal on P1.  

C.  RESULTS 

As a first step, V2 on W2 is plotted versus the frequency when 
there is no shield around it at all (Fig. 20). We call it “V2ref”. If 
we remind that W1 is excited by a voltage generator, the 
frequency response is typical of a far end crosstalk frequency 
response with the following signature characteristics: 

!" At very low frequencies, below about 1 kHz, the voltage 
is constant with the frequency and is equal to Rg.ℓ/R, 

!" When the ground resistance, Rg, becomes negligible 
compared to the inductance and before frequency 
resonances (here between 1 kHz and about 50 MHz), the 
voltage varies linearly with the frequency, 

!" At higher frequencies, over 50 MHz, a classical 
frequency resonant signature is observed. 

!

 
FIGURE 20. Voltage V2ref induced on W2 (bare wire with no shield at all) – 
Far end crosstalk 

Then, we evaluate the performances of the electrical bonding 
connections by computing the shielding effectiveness (SE) of 
the cable link, defined in this case as the ratio between the 
voltage V2 on the 50 % load of STC1/STC2 over the voltage 
V2ref (Fig.21): 

!" #
! !

! !"#$
! ! ! ! ! "#$%!

The SE frequency variations calculated by CRIPTE in all 
shield end connection configurations are plotted in Fig.21. 

These results put to the fore that: 

!" For the same electrical connection solution of the shield, 
at low frequencies, the overshield configuration (STC2) 
increases the SE, as expected, by about 10dB up to 30-
40 dB in the medium frequency bandwidth. 

!" For both shielded and overshielded configurations 
(STC1 and STC2), the 10-cm bonding wire starts 
degrading the SE from about 100kHz, when the direct 
cross-coupling between W1, the bonding wire, and W2 
starts dominating over the EM coupling on the shielded 
section.  

Finally, we observe that disconnecting an extremity of the 
external shield significantly damages the SE. In the case of the 
overshielded configuration (STC2), since only the external 
shield is disconnected at one extremity, the internal shield still 
brings EM attenuation and the effectiveness becomes similar 
to the performance of the single shielded configuration 
(STC1). 

 

 
FIGURE 21. Shielding effectiveness for the various electrical shielding 
solutions of W2 (CRIPTE calculations) 

VII. CONCLUSION 
In this paper, we have proposed a MTL model accounting 

for cables with several shielding levels. This model includes 
the transfer impedance and admittance of the cable shields in 
the expressions of the p.u.l impedance and admittance 
matrices. The model is named “unified model” because it can 
be applied for any conditions of loads of the shields at the ends 
of the MTL. In this model, the shields are considered as 
equivalent wires of the MTL. 

When the shields are correctly short-circuited at their 
extremities and when the shield resistance is lower than the 
resistance of the cores, this unified model entirely complies 
with the simplified two-step model in which the equivalent 
induced p.u.l. voltage generators are proportional to the 
product of the transfer impedance by the current flowing on 
the shield. In this paper, we have established the conditions 
under which the two-step model is applicable. Under these 
conditions, we have established the two equivalent TL-models 
to be applied in sequence in the two-step model. Especially, 
we have shown that a special attention must be paid on the TL-
model to be used in the second step for the inner wire response 
because it slightly differs from the inner TL-problem used to 
establish the unified model. 
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From a general modelling perspective, the unified model has 
the advantage to be general, allowing one to model any type 
of electrical connection of the MTL shields, without the 
requirement to have its extremities short-circuited to the 
ground as required for the classical two-step approach. Finally, 
even if the illustrations proposed in this paper mainly concern 
EM coupling, the model has also the advantage to address EM 
emission problems with as much generality (as shown in [14]). 
As a conclusion, such a model can be used for the design of 
cable bundle topologies for which the efficiency of the cable 
shields cannot be perfect and for which a balance between the 
installation constraints and the shield characteristic is needed. 
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