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Abstract 
An iterative algorithm is presented for analyzing the 
optimal resonant radiation properties of electromagnetic 
waves by cubically polarized nonlinear layers. The analysis 
is based on mathematical models for the rigorous treatment 
of the following problems: Self-consistent solution of both 
the system of boundary value problems of electrodynamics 
at resonant frequencies of excitation and generation, as well 
as the corresponding linearized eigenvalue problems with 
induced dielectric coefficients. The choice of the resonant 
excitation frequency of a nonlinear object in dependence on 
the real parts of the eigen frequencies of the spectral 
problems is discussed. 

For the example of an absolutely transparent nonlinear 
layer in a linear approximation (with a linear component of 
the permittivity equal to one), the effect of converting the 
excitation field energy into the field energy of the generated 
third harmonic is demonstrated. The excitation frequency 
(basic frequency) is chosen such that the resonant 
generation frequency (the tripled frequency) coincides with 
the real part of the corresponding eigenvalue of the induced 
spectral problem. Here, with an increase of the amplitude of 
the incident field, the values of the scattered and generated 
energies in the reflection zone are insignificant. In this case, 
an effect of energy conversion can be observed in the 
transition zone: a decrease in the scattered energy and an 
increase in the generated one. 

1. Introduction 
The interest in the study of the properties of nonlinear 
objects has not diminished over the decades. This is 
evidenced by the results of many theoretical and 
experimental studies, among which we mention the works 
[1-7]. In this paper, we concentrate on the analysis of 
resonant properties inherent in layered, cubically 
polarizable media. It should be pointed out that, for a small 
amplitude of the irradiating field (that is if the generation of 
higher harmonics can be neglected) it is possible to describe 
a nonlinear medium by means of the simplest Kerr 
approximation. In such a situation, it is possible to analyze 
nonlinear layered structures as objects of resonant wave 

scattering only. In the general case of excitation by a packet 
of harmonic oscillations at multiple frequencies, the 
problem of numerical computation is reduced to a system of 
coupled boundary value problems with nonlinear Kerr-type 
permittivities induced at the multiple frequencies. In most 
cases, the excitation by a single harmonic field is 
considered, and the investigation is reduced to the rigorous 
solution of a nonlinear boundary value problem. An 
increase in the amplitude of the incident field leads to both 
scattering and generation of waves at multiple harmonics. 
Even in the case of excitation by a single plane wave, a 
multi-frequency system of coupled nonlinear boundary 
value problems with induced permittivities and source 
functions is generated. The analysis of the resonance 
properties of wave radiation by nonlinear layered structures 
is reduced to solving self-consistently a system of nonlinear 
Hammerstein integral equations or a system of boundary 
value problems of Sturm-Liouville type, both of which are 
equivalent to the original system of nonlinear boundary 
value problems [8-13]. 

The presented work continues our studies of the 
physical features of resonant radiation by an absolutely 
transparent nonlinear layer in a linear approximation with a 
linear component of the permittivity equal to one [10, 13]. 
In the previous works, the effect of heavy conversion of 
excitation energy into generated energy of a transparent 
nonlinear layer was discovered. In this paper, we explain 
the physical mechanism of the mentioned effect. We show 
that it is due to the resonant properties of the generated 
oscillations, that is, the coincidence of the real part of the 
eigenvalue of the spectral problem at the frequency of the 
generated oscillations with the generation frequency.  

The paper presents the numerical algorithm and the 
results of computations demonstrating the effect of optimal 
resonant conversion of the excitation energy into the 
generated energy. The dynamics of energetic characteristics 
and permittivities of the investigated processes of nonlinear 
resonant radiation is demonstrated. 

Certain properties of the numerical method were 
checked computationally to confirm the validity of the 
proposed mathematical model and the results of the 
calculations obtained. 
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2. The dynamics of nonlinear resonance and the 
method of its analysis 

2.1. The integral equation appraoch 

The problem of resonant radiation of waves by a nonlinear, 
nonmagnetic, isotropic, E-polarized  

  
cubically polarizable  

 
layered dielectric object (see Fig. 1) is investigated in a self-
consistent way, see [8, 13]. The time dependency is of the 
form   Here the 
dimensionless variables  denote spatial-temporal 
coordinates such that the layer has the thickness , where 

;  are the circular frequencies,  
are the frequency parameters;  are the incoming wave 
lengths; , ,  and  are the free-
space permittivity and permeability, respectively. 

 

Figure 1: The plate-like structure with nonlinear layers. 
 

It is presumed that the irradiating wave packet consists 
of an intense field at a frequency  and of weak fields at 
the multiple frequencies  and . Only the strong field 
is generating waves at the tripled frequency. Specifically, 
the irradiating wave packet has the form 

  (1) 

With 

 

It acts onto the layered structure at angles of incidence 
 

and with amplitudes  at the frequencies 

.  
Here  

 

are the longitudinal and transverse propagation constants. 
The structure is irradiated by a packet of planar 

stationary quasi-homogeneous (along the co-ordinate ) 
waves (1) satisfying a condition of phase synchronism (see 
[10, 13]): 

  (2) 

In such a situation the dielectric coefficients at the 
frequencies  are homogeneous along the co-ordinate  
(see [10, 13]). They have the form 

  (3) 

where  

  (4) 

are the quasi-homogeneous (along the co-ordinate ) 
scattered/generated fields at the multiple frequencies 

;  

 
is the cubic susceptibility function of the nonlinear object; 

 and  are the entries of the susceptibility tensors of 
the nonlinear medium;  

 

is the Heaviside function;    is Kronecker’s  symbol, and 
“ ” is the symbol of complex conjugation. 

The problem of interest can be described 
mathematically by a system of nonlinear boundary value 
problems or, equivalently, by the following system of one-
dimensional nonlinear Hammerstein integral equations for 
the unknown functions , see [8-
11, 13], 
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  (5) 

where 

 

are functions defined by the excitation fields (1) with 
amplitudes . 

The fields (4) can be determined by solving the system 
(5) and can be represented in the form 

  (6) 

using the formulas 

 

2.2. The coupled nonlinear algebraic equation system 
and the induced eigenvalue problems  

By using appropriate quadrature rules, the system of the 
nonlinear Hammerstein integral equations (5) can be 
transformed into a system of coupled nonlinear complex 
algebraic equations of the second kind [12, 13] 

  (7) 

and to the induced eigenvalue problems in the complex 
region of the frequency parameters, see Figs. 2, 3 and [13, 
14],  

  (8) 
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Figure 2: (а) Physical and (b) non-physical sheets  
 Branch points  cuts 
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denote the vectors of the solution to be determined;  is the 
identity matrix;  and  are the amplitude vectors 
defined by the incident waves; 

 are matrix-valued 

nonlinear functions;   are the 
right-hand side vectors determined by the particular choice 
of the quadrature formula. In problem (8),  is the 
discrete set of the eigenvalues  to be determined;  are 
two-sheeted Riemann manifolds the sheets of which 
uniquely specify the functions of the transverse propagation  

 

(depending on the complex eigenvalues  at the known 
real values of the longitudinal propagation constants 

), cf. Fig. 2;  

 
are the vectors of the values of the unknown nontrivial 
solution at the nodes in the layer corresponding to the eigen-

frequencies ;  are matrices 

depending on the given vectors , see (7) and (8). 

In the computational experiments, we use the structure 
of the Riemann manifolds  depicted in Fig. 2. These 
surfaces  (see Fig. 2) are two-sheeted with real 
algebraic branch points of second order

 (i.e. , ) and 
cuts along the lines no. 2. The physical and non-physical 
sheets  defined by one and the same configuration of 
the cuts no. 2 will be called dual. Those submanifolds of the 
dual sheets  where the values 

 have identical signs are 

marked on the physical and non-physical sheets of the 
surface  with the same color, see Fig. 2. On the real 
axis  of the first physical sheet, see Fig. 2 (а), the 

values  correspond to the prescription of 

the physically motivated radiation condition no. 1.1. The 
analytical continuation of  into the complex plane of 

eigenvalues , taking into account the requirement no. 1.1 
and the cuts no. 2, uniquely determines the values of 

 on the first physical sheet  under the 

conditions no. 2.1 and 3.1, see. Fig. 2 (а). The second non-
physical sheet differs from the first physical sheet in the 
replacement of the signs of the pair  by the 

opposite ones, see. nos. 1.2, 2.2 and 2.3 in Fig. 2 (b). In this 
case, the requirement no. 1.2 plays the role of an excitation 
condition. 

We mention that the cuts no. 2 can be given on a sheet 

of the Riemann manifolds , , by arbitrary 
continuous curves located in the third and fourth quadrants 
of the complex plane and connecting the branch points with 
the point at infinity, see [13, 14]. 

Examples of physical sheets of the Riemann manifolds 
,  with different configurations of cuts along 

the coordinate axes are shown in Fig. 3. 
The affiliation of the frequency spectral parameter 

 (i.e., the pair ) to the 
physical or non-physical sheets of the surface  with 
different configurations of the cuts can be checked by the 
fulfillment of the conditions no. 2.1, 3.1 and 2.2, 3.2 
defining the submanifolds, see Figs. 2 and 3.  
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from a physical sheet (region no. 2.1) to a non-physical 
sheet (region no. 3.2). Such a behaviour of the curve  
(due to the coincidence of the conditions to the regions 
no. 2.1 and 3.2, i.e. , , 

) is accompanied by the conservation of the 

signs of  when changing from one sheet to 

the other. The same dispersion curves  completely 
belong to single sheets of the surfaces  defined by 
different variants of the cuts no. 2 in Fig. 3, namely to the 
physical sheet  shown in Fig. 3 (а), and to the non-
physical sheet , dual to the physical sheet , shown 
in Fig. 3 (b). Here also the values of the quantities 

 are determined by the identical conditions 

no. 2.1 and 3.2. 

2.3. The algorithm of the dynamics of resonant processes 

The study of the behaviour of resonant wave radiation for 
the variation of the excitation amplitudes at frequencies in 
the vicinity of the induced eigenvalues of the nonlinear 
layered object under consideration is carried out by the help 
of the algorithm [12]: 

 (9) 

The stopping criterion for (9) is 

  (10) 

where  is a given value of the relative computing 
error. 

In the scheme (9), the following steps are successively 
performed: the solution of the coupled problem (by means 
of the scheme (6)); the solution of the induced eigenvalue 
problems (7); the selection of the excitation frequency from 
the values given in the last block of the algorithm (9). 

To describe the radiation properties of the nonlinear 
object, we use the following notation: 

 

The quantities  characterize the proportions of the 
radiated energy to the total excitation energy. 

The fractions of the radiated energy at the frequencies 
 correspond to the quantities 

. 
The proportions of the energy of the third harmonic to the 

energy radiated by the first harmonic and to the total energy 
are defined as 

 

The behaviour of the relative Q-factor  
 

of eigen waves is of interest [13, 15-17]. 
Here 
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 of the corresponding eigenvalue problems 

induced at the frequencies , , see [13, 14]. 
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generation frequency of the third harmonic, i.e.  
(see (9)).  

The computational results obtained using the iterative 
algorithm (9) in the amplitude range  
are presented in Figs. 4-7. The calculation of the frequency 
characteristics  

  of the induced spectral problems 
(in the second block (9)) was carried out using the Riemann 
manifolds presented in Fig. 2. The parts of the eigen 
frequency branches , , and their 
projections onto the coordinate planes belonging to different 
sheets of the Riemann manifolds , , are marked 
in Fig. 4 by different colors. This also applies to the curves 
of the spectral characteristics   

 in Fig. 5. Thus, the curve of the eigen frequency 

branch  at  and 

 lies on the non-physical and physical 

sheet, respectively, of the surface , see Figs. 4 (а), 5. 

Similarly, the branch  at  

and  is located on the non-physical and 

physical sheet, respectively, of the surface , see 
Figs. 4 (b), 5. In Figs. 4, 5 the graphs of the excitation 
frequencies ,  defined in the 
third block of the algorithm (9) (see Figs. 4 (а), 5) and the 
graphs of the generation frequencies , 

 (see Figs. 4 (b), 5). are depicted. 
Fig. 6, along with the energetic characteristics obtained 

by solving the self-consistent problem in the first block of 
the algorithm (9), also shows branches of the Q-factors 

 for  (see Fig. 6 (а)) and of the relative 

Q-factors  (see Fig. 6 (b)) corresponding to the 
eigen frequency branches depicted in the Figs. 4, 5 above. 
For very small values of the amplitudes  of the incident 
field, the eigen frequencies with large negative values 

, , correspond to small Q-factors , 
see Figs. 4, 5. 

 
Figure 5: The curve of the excitation frequencies 

 and the curves of the spectral 

characteristics  for . 
 

The dynamics of the relative quality factor  
is interesting, too. The monotone decrease of this quantity 
with growing amplitude of the irradiating field at the 
resonant excitation frequencies, determined by the last 
block in algorithm (9), is accompanied by an increase in the 
generating ability of the nonlinear object, see Fig. 6 (b). 

In the case under consideration, an increase in the 
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Figure 4: The eigen frequency branches  

at  and their projections onto the co-ordinate 
planes (а) for  and (b) for . The curves (а) of the 
excitation frequencies  and (b) of the generation 

frequencies .  
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incident amplitude  is accompanied by a slight increase 

in the values of the radiated energies  and 

, resp., in the reflection zone. The maximum 

values of these quantities for  do not exceed 
 and , resp. (see Fig. 6). In the transition zone, 

an effect of energy conversion can be observed: a decrease 
in the scattered energy  to  and an 

increase in the generated energy  up to  

for , see Fig. 6 (b)). At the same time, for the 

amplitude , the fraction  of the total 
energy dissipated to the third harmonic exceeds by 

 times the energy dissipated to the first harmonic, 

and the total generated energy  amounts to 
 of the total radiated energy. 

In Fig. 7 the surfaces of the absolute values  and 

 of the amplitudes of the scattered and generated 
fields, resp., in the nonlinear layer at the scattering and 
generation frequencies  and  are 

shown, cf. (6). The surfaces of the real  and 
imaginary  parts of the nonlinear permittivities (3) 
induced by the fields (6) are also depicted. The results were 
obtained using the self-consistent analysis of the systems of 
nonlinear problems, see the first block in algorithm (9). 

In the parameter range  
 

under study, with an increase in the amplitude  of the 
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Figure 6: Curves at the excitation frequencies 
 of the induced nonlinear layer: (a) the 

energetic characteristics  and the Q-factors 

 for ; (b) the energetic characteristics 
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Figure 7: The amplitude characteristics  and induced 
permittivities   for  at (a) the 

scattering frequency , (b) the generation 

frequency . 
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excitation field, a more pronounced resonance behaviour of 
the amplitude characteristics  and  of the radiated 
fields, resp., is observed in the -direction (i.e. along the 
height of the nonlinear layer). In this case the layer is 
converted into a resonant layered structure, see Fig. 7. 

Variations of the real parts of the permittivities are 
observed in the range , , see 
Fig. 7. The imaginary part of the permittivity at the 
scattering frequency  is non-negative, it takes values in 
the range , see Fig. 7 (а). This 
behaviour of  is due to the manifestation of the effect 
of energy conversion of the incident field into the generated 
one, that is, the energy expended by the third harmonic 
field. At the generation frequency  we have that 

, see Fig. 7 (b). This is due to our assumption 
about the weakness of the generated third-harmonic field. 
Such a field is involved in the generation process, but does 
not lead to the generation of new higher harmonics. 

3.2. Specifics in the computations of nonlinear resonant 
structures  

This section discusses criteria for evaluating the 
computational features of resonant radiation processes by 
nonlinear layered objects. 

The calculations were performed with double precision 
in the standard arithmetic of complex numbers, the 
corresponding machine epsilon is equal to 

. This means that the number of 
significant decimal digits in the mantissa is not larger than 

. 
The analysis of resonant processes is carried out on the 

basis of the iterative algorithm (9). The systems of 
nonlinear algebraic equations in the self-consistent problem 
(block 1 in algorithm (9)) and the systems of linear 
algebraic equations for the linearized spectral problems 
(block 2 in algorithm (9)) are derived from the systems of 
Hammerstein and Fredholm integral equations of the second 
kind by use of a composite closed Newton-Cotes' rule with 

 nodes per subinterval (Weddle's rule).  
In the range of parameters under investigation, equation 

systems of dimension  were considered. The relative 
error of the algorithm (9) did not exceed the value  
(see (10)). 

In the considered case of a non-absorbing medium 
(where ), the energy balance law [13] 

 

was verified numerically. In the numerical experiments, the 
magnitude of the energy balance error 

 

was investigated. Fig. 8 (a) shows the dependence of the 
energy balance error  and of the excitation 

frequency  on the amplitude  of the 
incident field, cf. algorithm (9). 

The results of calculations showed that, in the studied 
range of the problem parameters, the absolute value 

 is acceptable, see Fig. 8 (а). 

Fig. 8 (b) illustrates the estimates of the conditioning 
characteristics of the matrices of dimension  obtained in 
(9) using the composite Weddle's quadrature formula. The 
estimation of the matrix conditionality was implemented on 
the basis of the methodology described in [15]. 

The degeneration level of the spectral matrices 
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Figure 8: Behaviour of the self-consistent iterative processes 
(9) at  obtained by means of Weddle's 
quadrature rule for equation systems of dimension . 
Curves: (a)  the error of the energy balance 

and  the excitation frequencies; 

(b)  the singularity measure of the matrices of 

the eigenvalue problems and  the sensitiveness of 
the self-consistent analysis to errors for .  
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 at the points of the eigenvalues 
, , see block 2 in algorithm (9), can 

be characterized by the quantities  
. 

The graphs of , , in dependence on 
the parameters of the spectral problems are shown in 
Fig. 8 (b). These values reflect large values of the matrix 
conditionality, which is an indirect feature of the 
degeneration (or singularity) of these matrices. 

The sensitiveness of the matrices , see block 2 in 
the algorithm (9), w.r.t. the errors at the scattering 

 and generation  frequencies can be 
described by the quantities  

. 
The logarithm of the matrix conditionality gives some 

information about how many significant digits are lost in 
solving the system [15]. 

A discussion of the curves , , depicted 
in Fig. 8 (b) shows that in the studied parameter range of the 
self-consistent problem no more than two significant digits 
are lost. 

4. Conclusions 
The paper describes an iterative algorithm for analyzing the 
processes of resonant wave radiation by nonlinear layered 
structures. It is based on the self-consistent solution of 
nonlinear problems at multiple real frequencies close to 
complex eigenfrequencies of linearized eigenvalue problems 
with induced dielectric coefficients.  

Results of numerical studies of the properties of 
scattering and resonant generation of waves by an 
absolutely transparent layer in the linear approximation are 
presented. The effect of energy conversion of the incident 
field into the resonant transmitted field is described. In 
particular, using the concept of the relative quality factor it 
was shown that the energy exchange processes occurring 
during the generation of waves by nonlinear strucures can 
be indirectly analyzed through the consideration of the 
spectral characteristics of the structures induced by the 
incident field. 

The mathematical model of the proposed approach is 
based on a rigorous formulation and a self-consistent 
solution of a system of nonlinear inhomogeneous and 
linearized homogeneous spectral boundary value problems 
of Electrodynamics.  

The reliability of the approach and the obtained results 
obtained are controlled by the following criteria: 
Verification of an energy balance law, check of the 
degeneracy (by means of the magnitude of the condition 
numbers) of the matrices of the eigenvalue problems, 
confirmation of the low sensitivity to errors of the matrices 
in the self-consistent analysis of the processes under study 
(also by means of the condition numbers). 

The proposed mathematical model can prove to be very 
effective in the synthesis of material and geometric 

parameters of nonlinear structures with optimal resonant 
properties of scattering, generation, and energy storage.  
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