Dipole nanoantennas of single-walled carbon nanotube bundles: A numerical analysis
Main Article Content
Abstract
Carbon nanotube-based nanoantennas could configure important components in devices for applications in various fields, such as sensing, imaging, and signal transmission at the nanoscale. One of the factors that can affect the properties and, therefore, the performance of the nanoantenna is the temperature. In this work, the resonance properties at different temperatures for dipole nanoantennas formed from bundles of densely packed carbon nanotubes are analyzed. Calculations are made from the Hallén equation using the dynamic quantum conductivity and an equivalent radius for the antenna based on the surface area of the bundle. Results are obtained in the range from 1 GHz to1000 GHz and temperatures from 200K to 500K. A detailed calculation of the relaxation frequency is performed to consider the possible interaction of electrons with defects and acoustic and optical phonons. Input impedance, first resonance frequency, and radiation efficiency are obtained for different numbers of nanotubes in the bundle. Results show a significant effect of the temperature and surface area of the bundle on these parameters.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
A. S. C. Vakhrushev Alexander V., Kodolov Vladimir I., Haghi A. K., Ed., Carbon Nanotubes and Nanoparticles: Current and Potential Applications. Palm Bay, Florida, USA: Apple Academic Press Inc., 2019.
A. Todri-Sanial, J. Dijon, and M. Antonio, Eds., Carbon Nanotubes for Interconnects Process, Design and Applications. Switzerland: Springer International Publishing, 2017.
M. Hajjyahya, M. Ishtaiwi, J. Sayyed, and A. Saddouq, "Design of Carbon Nanotube Antenna in Nanoscale Range", Open J. Antennas Propag., vol. 9, pp. 57-64, 2021, doi: 10.4236/ojapr.2021.94005.
Y. N. Jurn, M. Abdulmalek, H. A. Rahim, S. A. Mahmood, and W. Liu, "Electromagnetic Modelling of Bundle of Single-walled Carbon Nanotubes with Circular Geometry for Antenna Applications", ACES J., vol. 32, no. 6, pp. 531-541, 2017.
E. Medina-Guerra and Á. Salazar, "Effect of the radius on the resonance properties of carbon nanotube dipole antennas", J. Commun. Technol. Electron., vol. 62, no. 10, 2017, doi: 10.1134/S1064226917100096.
M. Shou and R. Saito, "Surface plasmons in graphene and carbon nanotubes", Carbon N. Y., vol. 167, 2020, doi: 10.1016/j.carbon.2020.05.019.
R. R. Hartmann, J. Kono, and M. E. Portnoi, "Terahertz science and technology of carbon nanomaterials", Nanotechnology, vol. 322001, no. 25, pp. 1-16, 2014, doi: 10.1088/0957-4484/25/32/322001.
Y. Wang, J. Shuo, M. Ming, and H. Chen, "Electromagnetic Radiation from Carbon Nanotube at Terahertz Frequency", 2012 5th Glob. Symp. Millim. Waves (GSMM 2012), pp. 554-558, 2012, doi: 10.1109/GSMM.2012.6314399.
J. Hao and G. W. Hanson, "Infrared and Optical Properties of Carbon Nanotube Dipole Antennas", IEEE Trans. Nanotechnol., vol. 5, no. 6, pp. 766-775, 2006, doi: 10.1109/TNANO.2006.883475.
G. W. Hanson, "Fundamental Transmitting Properties of Carbon Nanotube Antennas", IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3426-3435, 2005, doi: 10.1109/TAP.2005.858865.
M. F. Malek, Y. N. Jurn, S. A. Mahmood, and A. T. Maolood, "Performance Evaluation of the Electromagnetic Behavior of the Bundle SWCNTs with Circular Geometry", 2015 IEEE Int. Conf. Electron. Comput. Commun. Technol., pp. 1-6, 2015, doi: 10.1109/CONECCT.2015.7383893.
Y. N. Jurn, M. F. Malek, W. Liu, and S. A. Mahmood, "An Investigation of Single-Walled Carbon Nanotubes Bundle Dipole Antenna at THz Frequencies", 2014 IEEE Int. Conf. Control Syst. Comput. Eng., 2014, doi: DOI:10.1109/ICCSCE.2014.7072782.
S. Choi, S. Member, and K. Sarabandi, "Performance Assessment of Bundled Carbon Nanotube for Antenna Applications at Terahertz Frequencies and Higher", IEEE Trans. Antennas Propag., vol. 59, no. 3, pp. 802-809, 2011, doi: 10.1109/TAP.2010.2103023.
P. Franck, Dominique Baillargeat and Beng Kang Tay, "Trade - offs in Designing Antennas from Bundled Carbon Nanotubes", 2012 IEEE/MTT-S Int. Microw. Symp. Dig., pp. 6-8, 2012, doi: 10.1109/MWSYM.2012.6259507.
Y. Huang, W. Yin, and Q. H. Liu, "Performance Prediction of Carbon Nanotube Bundle Dipole Antennas", IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 331-337, 2008, doi: 10.1109/TNANO.2007.915017.
K. Sarabandi and S. Choi, "Radiation Efficiency Assessment of Bundle Carbon Nanotubes Antenna at Terahertz Frequency Range", 2011 XXXth URSI Gen. Assem. Sci. Symp., 2011, doi: 10.1109/URSIGASS.2011.6050396.
Y. Wang, Y. M. Wu, L. L. Zhuang, S. Q. Zhang, L. W. Li, and Q. Wu, "Electromagnetic Performance of Single Walled Carbon Nanotube Bundles", 2009 Asia Pacific Microw. Conf., pp. 190-193, 2009, doi: 10.1109/APMC.2009.5385406.
J. J. Plombon; Kevin P. O'Brien, Florian Gstrein, Valery M. Dubin and Yang Jiao, "High-frequency electrical properties of individual and bundled carbon nanotubes High-frequency electrical properties of individual and bundled carbon nanotubes", Appl. Phys. Lett., vol. 063106, pp. 21-24, 2007, doi: 10.1063/1.2437724.
A. G. Chiariello, C. Forestiere, G. Miano, and A. Maffucci, "Scattering properties of carbon nanotubes", COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32, no. 6, pp. 1793-1808, 2013, doi: 10.1108/COMPEL-10-2012-0206.
E. Pop, D. A. Mann, K. E. Goodson, and H. Dai, "Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates", J. Appl. Phys. 101, 093710 2007, doi: 10.1063/1.2717855.
Orfanidis S.J., Electromagnetic Waves and Antennas. https://www.ece.rutgers.edu/~orfanidi/ewa/, 2016.
A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, "Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Specific surface area of carbon nanotubes and bundles of carbon nanotubes", Carbon N. Y., vol. 39, pp. 507-514, 2001, doi: 10.1016/S0008-6223(00)00155-X.
S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V Gusakov, "Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation", Phys. Rev. B, vol. 60, no. 24, pp. 136-149,1999, doi.org/10.1103/PhysRevB.60.17136
D. Akinwande and P. H.-S. Wong, Carbon Nanotube and Graphene Device Physics. New York, United States of America: Cambridge University Press, 2011.
Walton C. Gibson, The Method of Moments in Electromagnetics, Third Edit. Taylor & Francis Group, LLC, 2022.
Fikioris G. and Wu T., On the Application of Numerical Methods to Hallen's Equation, IEEE Trans. Antennas Propagat., 49, pp. 383-392, 2001, doi: 10.1109/8.918612.
Fikioris G., Anastasios Papathanasopoulos, On the thin-wire integral equations for carbon nanotube antennas, IEEE Trans. Antennas Propagat., 66, Issue: 7, pp. 3567-3576, 2018, doi: 10.1109/TAP.2018.2826651.
N. Fichtner, X. Zhou, and P. Russer, "Investigation of carbon nanotube antennas using thin wire integral equations", Adv. Radio Sci, vol. 6, pp. 209-211, 2008, doi: 10.5194/ars-6-209-2008.
S. A. Maksimenko, M. V. Shuba, P.P. Kuzhir, G.Ya. Slepyan, "Antenna Resonances in Carbon Nanotubes: Theoretical Model and Experimental Verification", Proceedings of the 15th IEEE International Conference on Nanotechnology, July 27-30, 2015, Rome, Italy, doi: 10.1109/NANO.2015.7388949.
W. Wu; S. H. Brongersma; M. Van Hove; K. Maex, Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions, Appl. Phys. Lett. 84, 2838-2840 (2004), doi: 10.1063/1.1703844.
Katayun Barmak; Tik Sun; R. Coffey, Impact of surface and grain boundary scattering on the resistivity of nanometric Cu interconnects, AIP Conf. Proc. 1300, 12-22 (2010), doi: 10.1063/1.3527118.
Baydin, A.; Tay, F.; Fan, J.; Manjappa, M.; Gao,W.; Kono, J., Carbon Nanotube Devices for Quantum Technology. Materials 2022, 15, 1535. https://doi.org/10.3390/ma15041535.
Cao et al., Quantum biology revisited, Sci. Adv. 2020; 6 : eaaz4888, doi: 10.1126/sciadv.aaz4888.
E. Amram Bengio, Damir Senic, Lauren W. Taylor, Dmitri E. Tsentalovich, Peiyu Chen, Christopher L. Holloway, Aydin Babakhani, Christian J. Long, David R. Novotny, James C. Booth, Nathan D. Orloff, and Matteo Pasquali, High efficiency carbon nanotube thread antenas, Appl. Phys. Lett. 111, 163109 (2017), doi: 10.1063/1.4991822.
Anderson, E. C., Cola, B. A., Photon-assisted tunneling in carbon nanotube optical rectennas: Characterization and modeling, ACS Appl. Electron. Mater. 2019, 1, 692- 700, doi.org/10.1021/acsaelm.9b00058.
Lina Tizani, Yawar Abbas, Ahmed Mahdy Yassin, Baker Mohammad and Moh'd Rezeq, Single wall carbon nanotube based optical rectenna, RSC Adv., 2021,11, 24116-24124, doi: 10.1039/D1RA04186J.
Zhifu Yin, Ao Ding, Hui Zhang and Wang Zhang, The Relevant Approaches for Aligning Carbon Nanotubes, Micromachines 2022, 13, 1863, doi: 10.3390/mi13111863.