Plasmonic coupling in Au, Ag and Al nanosphere homo-dimers for sensing and SERS

Main Article Content

J. Katyal

Abstract

The localized surface plasmon resonance of homo-dimer nanostructures is studied using FDTD simulations. The calculated LSPR wavelength of Au, Ag and Al nanosphere forming a homo-dimer configuration is compared and the results reveal a larger LSPR shift in Ag and Al homo-dimer than in Au homo-dimer. Taking the sensitivity of LSPR shape to the size and interparticle spacing of nanoparticle along with a surrounding refractive index, parameters like refractive index sensitivity have been determined. The spherical homo-dimer over the whole range of particle size, studied here shows the index sensitivity order as Ag>Al>Au. Hence, the use of plasmonic material towards the refractive index sensing applications is useful in this order.  The average refractive index sensitivities of Ag, Al and Au are 287.09 nm/RIU, 210.21 nm/RIU and 192.47 nm/RIU in DUV-Visible-NIR region. Apart from LSPR shift, the highly confined near-field intensity enhancement of homo-dimer nanostructures for SERS has also been studied. The interacting homo-dimer nanoparticles reveals intensity enhancements in the junction. Comparing the field enhancement for Au, Ag and Al homo-dimer nanostructure 10^8-10^9  have been theoretically predicted in DUV-UV-visible region which can be used to strongly enhance the Raman scattering of molecules.

Downloads

Download data is not yet available.

Article Details

How to Cite
Katyal, J. (2018). Plasmonic coupling in Au, Ag and Al nanosphere homo-dimers for sensing and SERS. Advanced Electromagnetics, 7(2), 83–90. https://doi.org/10.7716/aem.v7i2.563
Section
Research Articles
Author Biography

J. Katyal, Amity University

Physics Department

References

K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment, J. Phys. Chem. B,107 (2003) 668-677.

View Article

C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles, Wiley interscience publication, 1998.

P.K. Jain, W. Huang, M.A. El-Sayed, On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation, Nano Lett.7 (2007) 2080-2088; P.K. Jain, M.A. El-Sayed, Plasmonic coupling in noble metal nanostructures, Chem. Phys. Lett. 487 (2010) 153-164.

View Article

P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridization in nanoparticle dimers, Nano Lett. 4 (2004) 899-903.

View Article

E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science 302(2003) 419–422.

View Article

Y. Gao, R. Zhang, J.C. Cheng, J.W. Liawc, C. Ma, Optical properties of plasmonic dimer, trimer, tetramer and pentamer assemblies of gold nanoboxes, Journal of Quantitative Spectrosc. & Radiative Transfer 125 (2013) 23.

View Article

Q.H. Wei, K.H. Su, S. Durant, X. Zhang, Plasmon resonance of finite one-dimensional Au nanoparticle chains, Nano Lett. 4 (2004) 1067-1071.

View Article

H.P. Paudel, K. Bayat, M.F. Baroughi, S. May, D.W. Galipeau, Geometry dependence of field enhancement in 2D metallic photonic crystals, Optics Express 17(2009) 22179-22189.

View Article

C.P. Burrows, W.L. Barnes, Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays, Optics Express 18 (2010) 3187-3198.

View Article

K. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an efficient nanolens, Phys. Rev. Lett. 91 (2003) 227402.

View Article

G. Pellegrini, G. Mattei, V. Bello, P. Mazzoldi, Interacting metal nanoparticles: optical properties from nanoparticle dimers to core-satellite systems, Mater. Sci. Eng. C 27 (2007) 1347-1350.

View Article

Lumerical Solutions; http://docs.lumerical.com.

A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA: Artec House Publishers, 1995.

N. Mattiucci, G. D'Aguanno, H.O. Everitt, J.V. Foreman, J.M. Callahan, M.C. Buncick, M.J. Bloemer, Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating, Optics Express 20 (2012) 1868-1877.

View Article

M. Norek, M. Włodarski, P. Matysik, UV plasmonic-based sensing properties of aluminum nanoconcave arrays, Current Applied Physics 14 (2014) 1514-1520.

View Article

U.K. Sur, J. Chowdhury, Surface-enhanced Raman scattering: overview of a versatile technique used in electrochemistry and nanoscience, Current Science, 105 (2013) 923.

K.C. Bantz, A.F. Meyer, N.J. Wittenbergb, H. Imb, O. Kurtulusa, S.H. Leec, N.C. Lindquistb, S.H. Ohb, C.L. Haynesa, Recent progress in SERS biosensing, Phys. Chem. Chem. Phys., 13 (2011) 11551.

View Article

M. Kall, H. Xu, P. Johansson, Field enhancement and molecular response in surface enhanced Raman scattering and fluorescence spectroscopy. Journal of Raman spectroscopy. 36 (2005) 510–514.

View Article

M.H. Chowdhury, K. Ray, M.L. Johnson, S.K. Gray, J. Pond, J.R. Lakowicz, On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing, J. Phys. Chem. C 114 (2010) 7448-61.

View Article

M.H. Chowdhury, K. Ray, S.K. Gray, J. Pond, J.R. Lakowicz, The use of Aluminum nanostructures as platforms for metal enhanced fluorescence of the intrinsic emission of biomolecules in the ultra-violet, Proc. of SPIE 7577 (2010) 75770O-1.

View Article

J.S. Sekhon, S.S. Verma, Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles, Plasmonics 6 (2011) 311-317.

View Article

P.K. Jain, M.A. El-Sayed Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing, Nano Lett. 8 (2008) 4347-4352.

View Article

Y. Lin, Y. Zou, R.G. Lindquist, A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing Biomed., Opt. Express 2 (2011) 478–484.

View Article

Y. Lin, Y. Zou, Y. Mo, J. Guo, R.G. Lindquist, E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing, Sensors 10 (2010) 9397–9406.

View Article